我正试图为一个圆柱体的每个表面着色,但是我不知道该如何去做,我尝试了以下内容:
for i in range(10):
col.append([])
for i in range(10):
for j in range(20):
col[i].append(plt.cm.Blues(0.4))
ax.plot_surface(X, Y, Z,facecolors = col,edgecolor = "red")
我希望为每个脸分配自己的颜色,所以我想我会为2d数组中的每个面提供一系列颜色。 但这会产生错误:
in plot_surface
colset.append(fcolors[rs][cs])
IndexError: list index out of range
以下是完整代码:
import numpy as np
from matplotlib import cm
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.linalg import norm
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
origin = np.array([0, 0, 0])
#axis and radius
p0 = np.array([1, 3, 2])
p1 = np.array([8, 5, 9])
R = 5
#vector in direction of axis
v = p1 - p0
#find magnitude of vector
mag = norm(v)
#unit vector in direction of axis
v = v / mag
#make some vector not in the same direction as v
not_v = np.array([1, 0, 0])
if (v == not_v).all():
not_v = np.array([0, 1, 0])
#make vector perpendicular to v
n1 = np.cross(v, not_v)
#normalize n1
n1 /= norm(n1)
#make unit vector perpendicular to v and n1
n2 = np.cross(v, n1)
#surface ranges over t from 0 to length of axis and 0 to 2*pi
t = np.linspace(0, mag, 200)
theta = np.linspace(0, 2 * np.pi, 100)
#use meshgrid to make 2d arrays
t, theta = np.meshgrid(t, theta)
#generate coordinates for surface
X, Y, Z = [p0[i] + v[i] * t + R * np.sin(theta) * n1[i] + R * np.cos(theta) * n2[i] for i in [0, 1, 2]]
col = []
for i in range(10):
col.append([])
for i in range(10):
for j in range(20):
col[i].append(plt.cm.Blues(0.4))
ax.plot_surface(X, Y, Z,facecolors = col,edgecolor = "red")
#plot axis
ax.plot(*zip(p0, p1), color = 'red')
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
ax.set_zlim(0, 10)
plt.axis('off')
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
plt.show()
答案 0 :(得分:4)
您的Z
数组大小为100x200
,但您只指定了10x20
种颜色。制作col
(具有正确尺寸)的更快捷方式可能类似于:
col1 = plt.cm.Blues(np.linspace(0,1,200)) # linear gradient along the t-axis
col1 = np.repeat(col1[np.newaxis,:, :], 100, axis=0) # expand over the theta-axis
col2 = plt.cm.Blues(np.linspace(0,1,100)) # linear gradient along the theta-axis
col2 = np.repeat(col2[:, np.newaxis, :], 200, axis=1) # expand over the t-axis
ax=plt.subplot(121, projection='3d')
ax.plot_surface(X, Y, Z, facecolors=col1)
ax=plt.subplot(122, projection='3d')
ax.plot_surface(X, Y, Z, facecolors=col2)
产生: