我已经使用转置表实现了alpha beta搜索。
我是否有关于在表格中存储截止值的正确想法?
具体来说,当桌面命中发生时,我的方案是返回截止点吗?(同样,存储它们。)我的实现似乎与this one冲突,但它直观地看起来对我而言。
此外,我的算法从不存储带有at_most标志的条目。我应该何时存储这些条目?
这是我的(简化)代码,展示了主要想法:
int ab(board *b, int alpha, int beta, int ply) {
evaluation *stored = tt_get(b);
if (entryExists(stored) && stored->depth >= ply) {
if (stored->type == at_least) { // lower-bound
if (stored->score >= beta) return beta;
} else if (stored->type == at_most) { // upper bound
if (stored->score <= alpha) return alpha;
} else { // exact
if (stored->score >= beta) return beta; // respect fail-hard cutoff
if (stored->score < alpha) return alpha; // alpha cutoff
return stored->score;
}
}
if (ply == 0) return quiesce(b, alpha, beta, ply);
int num_children = 0;
move chosen_move = no_move;
move *moves = board_moves(b, &num_children);
int localbest = NEG_INFINITY;
for (int i = 0; i < num_children; i++) {
apply(b, moves[i]);
int score = -ab(b, -beta, -alpha, ply - 1);
unapply(b, moves[i]);
if (score >= beta) {
tt_put(b, (evaluation){moves[i], score, at_least, ply});
return beta; // fail-hard
}
if (score >= localbest) {
localbest = score;
chosen_move = moves[i];
if (score > alpha) alpha = score;
}
}
tt_put(b, (evaluation){chosen_move, alpha, exact, ply});
return alpha;
}
答案 0 :(得分:2)
我的实施似乎与此相冲突
转置表查找代码似乎对我而言。它与wikipedia上的大致相同。
// Code on Wikipedia rewritten using your notation / variable names
if (entryExists(stored) && stored->depth >= ply)
{
if (stored->type == at_least)
alpha = max(alpha, stored->score);
else if (stored->type == at_most)
beta = min(beta, stored->score);
else if (stored->type == exact)
return stored->score;
if (alpha >= beta)
return stored->score;
}
这相当于(检查if (alpha >= beta)
已在每个节点类型中移动):
if (entryExists(stored) && stored->depth >= ply)
{
if (stored->type == at_least)
{
alpha = max(alpha, stored->score);
if (alpha >= beta) return stored->score;
}
else if (stored->type == at_most)
{
beta = min(beta, stored->score);
if (alpha >= beta) return stored->score;
}
else if (stored->type == exact)
return stored->score;
}
可以在以下位置更改:
if (entryExists(stored) && stored->depth >= ply)
{
if (stored->type == at_least)
{
// if (max(alpha, stored->score) >= beta) ...
if (stored->score >= beta) return stored->score;
}
else if (stored->type == at_most)
{
// if (min(beta, stored->score) <= alpha) ...
if (stored->score <= alpha) return stored->score;
}
else if (stored->type == exact)
return stored->score;
}
剩下的区别在于维基百科使用fail-soft优化,而您的代码是经典的alpha-beta修剪(fail-hard)。 Fail-soft是一个很小的改进,但并没有改变算法的关键点。
我的算法永远不会存储带有at_most标志的条目。我什么时候应该存储这些条目?
存储exact
/ at_most
节点类型的方法存在错误。在这里,您假设节点始终为exact
类型:
tt_put(b, (evaluation){chosen_move, alpha, exact, ply});
实际上它可以是at_most
节点:
if (alpha <= initial_alpha)
{
// Here we haven't a best move.
tt_put(b, (evaluation){no_move, initial_alpha, at_most, ply});
}
else
tt_put(b, (evaluation){chosen_move, alpha, exact, ply});