如何将三维密度图的主轴与笛卡尔坐标轴对齐?

时间:2016-05-03 14:08:37

标签: python numpy image-rotation ndimage

我有一个n x n x n numpy数组,其中包含立方网格上的密度值。我试图将密度图的惯性主轴与网格的笛卡尔x,y,z轴对齐。到目前为止,我有以下内容:

import numpy as np
from scipy import ndimage

def center_rho(rho):
    """Move density map so its center of mass aligns with the center of the grid"""
    rhocom = np.array(ndimage.measurements.center_of_mass(rho))
    gridcenter = np.array(rho.shape)/2.
    shift = gridcenter-rhocom
    rho = ndimage.interpolation.shift(rho,shift,order=1,mode='wrap')
    return rho

def inertia_tensor(rho,side):
    """Calculate the moment of inertia tensor for the given density map."""
    halfside = side/2.
    n = rho.shape[0]
    x_ = np.linspace(-halfside,halfside,n)
    x,y,z = np.meshgrid(x_,x_,x_,indexing='ij')
    Ixx = np.sum(rho*(y**2 + z**2))
    Iyy = np.sum(rho*(x**2 + z**2))
    Izz = np.sum(rho*(x**2 + y**2))
    Ixy = -np.sum(rho*x*y)
    Iyz = -np.sum(rho*y*z)
    Ixz = -np.sum(rho*x*z)
    I = np.array([[Ixx, Ixy, Ixz],
                  [Ixy, Iyy, Iyz],
                  [Ixz, Iyz, Izz]])
    return I

def principal_axes(I):
    """Calculate the principal inertia axes and order them in ascending order."""
    w,v = np.linalg.eigh(I)
    return w,v

#number of grid points along side
n = 10
#note n <= 3 produces unit eigenvectors, not sure why
#in practice, n typically between 10 and 50
np.random.seed(1)
rho = np.random.random(size=(n,n,n))
side = 1. #physical width of box, set to 1.0 for simplicity

rho = center_rho(rho)
I = inertia_tensor(rho,side)
PAw, PAv = principal_axes(I)

#print magnitude and direction of principal axes
print "Eigenvalues/eigenvectors before rotation:"
for i in range(3):
    print PAw[i], PAv[:,i]

#sanity check that I = R * D * R.T
#where R is the rotation matrix and D is the diagonalized matrix of eigenvalues
D = np.eye(3)*PAw
print np.allclose(np.dot(PAv,np.dot(D,PAv.T)),I)

#rotate rho to align principal axes with cartesian axes
newrho = ndimage.interpolation.affine_transform(rho,PAv.T,order=1,mode='wrap')

#recalculate principal axes
newI = inertia_tensor(newrho,side)
newPAw, newPAv = principal_axes(newI)

#print magnitude and direction of new principal axes
print "Eigenvalues/eigenvectors before rotation:"
for i in range(3):
    print newPAw[i], newPAv[:,i]

这里我假设惯性张量的特征向量定义了旋转矩阵(基于this question,而this webpage之类的Google结果似乎是正确的?)但是这并不是正确的。给我正确的结果。

我希望打印的矩阵是:

[1 0 0]
[0 1 0]
[0 0 1]

(这可能是错的)但是甚至不能从单位向量开始。我得到的是:

Eigenvalues/eigenvectors before rotation:
102.405523732 [-0.05954221 -0.8616362   0.5040216 ]
103.177395578 [-0.30020273  0.49699978  0.81416801]
104.175688943 [-0.95201526 -0.10283129 -0.288258  ]
True
Eigenvalues/eigenvectors after rotation:
104.414931478 [ 0.38786    -0.90425086  0.17859172]
104.731536038 [-0.74968553 -0.19676735  0.63186566]
106.151322662 [-0.53622405 -0.37896304 -0.75422197]

我不确定问题是我的代码还是我对旋转主轴的假设,但是我们将不胜感激。

1 个答案:

答案 0 :(得分:0)

Here是我为进行这种对齐而开发的代码的链接。

给出一组坐标为(x,y,z)的散点,目标是将与最小特征值关联的特征向量与3D笛卡尔轴的X轴匹配,并将与特征值中位数关联的特征向量与相同3D笛卡尔轴的Y轴。

为此,我执行了以下步骤:

  1. 仅需执行以下操作,即可将(xmn,ymn,zmn)中具有质心的点集转换为(0,0,0)中具有质心的新点集:(x-xmn,y-ymn, z-zmn)。

  2. 计算与最小特征值( min_eigen )相关的特征向量的xy投影与直角坐标轴的x轴之间的角度THETA(绕z旋转)。获得所得四边形后,旋转给定theta的min_eigen,使其包含在xy平面中。我们称这个结果向量为 rotz

  3. 计算 rotz 与x轴之间的角度PHI,以绕y轴旋转。一旦获得了phi,就对y轴的 rotz 进行旋转。在最后一次旋转后,与介质特征向量(medium_eigen)相关的特征向量就位于笛卡尔轴的yz轴上,因此我们只需要找到medium_eigen与笛卡尔轴的y轴之间的夹角即可。

  4. 计算medium_eigen与y轴之间的角度ALPHA。应用绕x轴aaa的旋转:完成了!

  

注意:在对点集应用步骤1,2,3之后,您必须重新计算3D_SVD(3D_单值分解)并从所得的特征向量集中进行计算,然后使用新的medium_eigen实施第4步。

我真的希望这会有所帮助。

旋转是通过此处定义的旋转矩阵实现的:Rotating a Vector in 3D Space