如何使用JAGS对来自不同参数族的有限分量的混合进行建模?

时间:2016-04-13 11:34:06

标签: r jags

想象一下一个基础过程,它从正态分布中以概率$ \ alpha $和一个均匀分布绘制一个数字,概率为$ 1 - \ alpha $。 因此,通过此过程生成的观察到的数字序列遵循$ f $的分布,即组件混合和$ \的混合权重 alpha $和$ 1 - \ alpha $。 当观察到的序列是唯一的输入时,你会如何用JAGS模拟这种混合物,但是参数族已知?

示例(在R中):

set.seed(8361299)
N <- 100
alpha <- 0.3
mu <- 5
max <- 50
# Which component to choose from?
latent_class <- rbinom(N, 1, alpha)
Y <- ifelse(latent_class, runif(N, min=mu, max=max), rnorm(N, mean=mu))

生成的(观察到的)Y看起来像: Generated Y

使用JAGS,应该可以获得混合重量以及已知组件的参数吗?

1 个答案:

答案 0 :(得分:3)

相同参数分布的混合模型在JAGS / BUGS中非常简单,但具有不同参数响应的混合模型(与您的一样)有点棘手。一种方法是使用“一招”,我们手动计算响应的可能性(选择模型潜在部分指定的两个分布中的一个),并将其与伯努利试验的(假)响应相匹配。每个数据点。例如:

# Your data generation:
set.seed(8361299)
N <- 100
alpha <- 0.3
mu <- 5
max <- 50
# Which component to choose from?
latent_class <- rbinom(N, 1, alpha)
Y <- ifelse(latent_class, runif(N, min=mu, max=max), rnorm(N, mean=mu))

# The model:
model <- "model{

    for(i in 1:N){

        # Log density for the normal part:
        ld_norm[i] <- logdensity.norm(Y[i], mu, tau)

        # Log density for the uniform part:
        ld_unif[i] <- logdensity.unif(Y[i], lower, upper)

        # Select one of these two densities:
        density[i] <- exp(ld_norm[i]*norm_chosen[i] + ld_unif[i]*(1-norm_chosen[i]))

        # Generate a likelihood for the MCMC sampler:
        Ones[i] ~ dbern(density[i])

        # The latent class part as usual:
        norm_chosen[i] ~ dbern(prob)

    }

    # Priors:
    lower ~ dnorm(0, 10^-6)
    upper ~ dnorm(0, 10^-6)
    prob ~ dbeta(1,1)
    mu ~ dnorm(0, 10^-6)
    tau ~ dgamma(0.01, 0.01)

    # Specify monitors, data and initial values using runjags:
    #monitor# lower, upper, prob, mu, tau
    #data# N, Y, Ones
    #inits# lower, upper
}"

# Run the model using runjags (or use rjags if you prefer!)
library('runjags')

lower <- min(Y)-10
upper <- max(Y)+10

Ones <- rep(1,N)

results <- run.jags(model, sample=20000, thin=1)
results

plot(results)

这似乎可以很好地恢复你的参数(你的alpha是1-prob),但要注意自相关(和收敛)。

马特

编辑:由于您询问了关于超过2个发行版的概括,这里是等效的(但更通用的)代码:

# The model:
model <- "model{
    for(i in 1:N){
        # Log density for the normal part:
        ld_comp[i, 1] <- logdensity.norm(Y[i], mu, tau)
        # Log density for the uniform part:
        ld_comp[i, 2] <- logdensity.unif(Y[i], lower, upper)
        # Select one of these two densities and normalise with a Constant:
        density[i] <- exp(ld_comp[i, component_chosen[i]] - Constant)
        # Generate a likelihood for the MCMC sampler:
        Ones[i] ~ dbern(density[i])
        # The latent class part using dcat:
        component_chosen[i] ~ dcat(probs)
    }
    # Priors for 2 parameters using a dirichlet distribution:
    probs ~ ddirch(c(1,1))
    lower ~ dnorm(0, 10^-6)
    upper ~ dnorm(0, 10^-6)
    mu ~ dnorm(0, 10^-6)
    tau ~ dgamma(0.01, 0.01)
    # Specify monitors, data and initial values using runjags:
    #monitor# lower, upper, probs, mu, tau
    #data# N, Y, Ones, Constant
    #inits# lower, upper, mu, tau
}"

library('runjags')

# Initial values to get the chains started:
lower <- min(Y)-10
upper <- max(Y)+10
mu <- 0
tau <- 0.01

Ones <- rep(1,N)

# The constant needs to be big enough to avoid any densities >1 but also small enough to calculate probabilities for observations of 1:
Constant <- 10

results <- run.jags(model, sample=10000, thin=1)
results

此代码适用于您需要的尽可能多的发行版,但预计会有更多分布的指数级自相关。