我有一些数据结构如下:
structure(list(subject = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("group1", "group2"), class = "factor"), measurement = c("color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time", "color", "time"), item_pos = c("1", "1", "2", "2", "3", "3", "4", "4", "1", "1", "2", "2", "3", "3", "4", "4", "1", "1", "2", "2", "3", "3", "4", "4", "1", "1", "2", "2", "3", "3", "4", "4"), value = c("blue", "1508", "orange", "752", "black", "585", "red", "842", "red", "879", "white", "1455", "green", "1757", "orange", "2241", "white", "2251", "yellow", "1740", "red", "1962", "yellow", "1854", "green", "1859", "blue", "2156", "yellow", "2494", "green", "1757"), item = c("A", "A", "B", "B", "B", "B", "A", "A", "A", "A", "B", "B", "B", "B", "A", "A", "C", "C", "C", "C", "D", "D", "D", "D", "C", "C", "C", "C", "D", "D", "D", "D")), .Names = c("subject", "group", "measurement", "item_pos", "value", "item"), row.names = c(NA, -32L), class = "data.frame")
按项目按主题进行多次观察,因此主题1的数据如下所示:
> filter(df.tidy, subject==1)
subject group measurement item_pos value item
1 1 group1 color 1 blue A
2 1 group1 time 1 1508 A
3 1 group1 color 2 orange B
4 1 group1 time 2 752 B
5 1 group1 color 3 black B
6 1 group1 time 3 585 B
7 1 group1 color 4 red A
8 1 group1 time 4 842 A
因此,在group
内,每个item
出现两次,并且每次出现时都会有measurement
的颜色和时间。项目显示的顺序位于item_pos
。
虽然我喜欢这种长格式,但是同事需要稍微宽泛一点,并且按照项目在自己的列中重复使用颜色和时间。 所需格式如下:
subject group item color1 color2 time1 time2
1 group1 A blue red 1508 842
1 group1 B orange black 752 585
...
4 group2 D yellow green 2494 1757
我的感觉是,应该可以使用gather()
,spread()
和其他dplyr动词的组合,但我不确定这里的dplyr等价物是什么(在for-loop speak)按组循环遍历项目并收集后续列中的颜色和时间观察。非常感谢!
我咨询了相关问题:
答案 0 :(得分:1)
我们可以从dcast
尝试library(data.table)
。转换' data.frame'到' data.table' (setDT(df.tidy)
,按'主题','测量'和'项目'分组,创建序列列" N"然后使用dcast
将“长”格式转换为“格式”格式。
library(data.table)
setDT(df.tidy)[, N:=1:.N, by = .(subject, measurement, item)]
dcast(df.tidy, subject+group + item ~measurement + N, value.var="value", sep="")
# subject group item color1 color2 time1 time2
#1: 1 group1 A blue red 1508 842
#2: 1 group1 B orange black 752 585
#3: 2 group1 A red orange 879 2241
#4: 2 group1 B white green 1455 1757
#5: 3 group2 C white yellow 2251 1740
#6: 3 group2 D red yellow 1962 1854
#7: 4 group2 C green blue 1859 2156
#8: 4 group2 D yellow green 2494 1757
或者使用dplyr/tidyr
,我们按同一列分组,创建序列列(" N"),ungroup
,粘贴'测量'和' N'用于创建测量N'的列(使用unite
)然后spread
将数据提供给广泛的'格式。
library(dplyr)
library(tidyr)
df.tidy %>%
group_by(subject, measurement, item) %>%
mutate(N = row_number()) %>%
ungroup() %>%
unite(measurementN, measurement, N, sep='') %>%
select(-item_pos) %>%
spread(measurementN, value)
# subject group item color1 color2 time1 time2
# (int) (fctr) (chr) (chr) (chr) (chr) (chr)
#1 1 group1 A blue red 1508 842
#2 1 group1 B orange black 752 585
#3 2 group1 A red orange 879 2241
#4 2 group1 B white green 1455 1757
#5 3 group2 C white yellow 2251 1740
#6 3 group2 D red yellow 1962 1854
#7 4 group2 C green blue 1859 2156
#8 4 group2 D yellow green 2494 1757