如何将多个变量的重复测量扩展为宽格式?

时间:2015-04-21 14:42:05

标签: r tidyr

我尝试使用长格式的列并将其扩展为宽格式,如下所示。我想使用tidyr通过我投资的数据处理工具来解决这个问题,但为了使这个答案更加通用,请提供其他解决方案。

以下是我所拥有的:

library(dplyr); library(tidyr)

set.seed(10)
dat <- data_frame(
    Person = rep(c("greg", "sally", "sue"), each=2),
    Time = rep(c("Pre", "Post"), 3),
    Score1 = round(rnorm(6, mean = 80, sd=4), 0),
    Score2 = round(jitter(Score1, 15), 0),
    Score3 = 5 + (Score1 + Score2)/2
)

##   Person Time Score1 Score2 Score3
## 1   greg  Pre     80     78   84.0
## 2   greg Post     79     80   84.5
## 3  sally  Pre     75     74   79.5
## 4  sally Post     78     78   83.0
## 5    sue  Pre     81     78   84.5
## 6    sue Post     82     81   86.5

所需的宽幅格式:

  Person Pre.Score1 Pre.Score2 Pre.Score3  Post.Score1 Post.Score2 Post.Score3
1   greg         80         78       84.0           79          80        84.5
2  sally         75         74       79.5           78          78        83.0
3    sue         81         78       84.5           82          81        86.5

我可以通过为每个分数做这样的事情来做到这一点:

spread(dat %>% select(Person, Time, Score1), Time, Score1) %>% 
    rename(Score1_Pre = Pre, Score1_Post = Post)

然后使用_join,但这看起来很冗长,而且还有更好的方式。

相关问题:
tidyr wide to long with two repeated measures
Is it possible to use spread on multiple columns in tidyr similar to dcast?

4 个答案:

答案 0 :(得分:79)

如果你想坚持使用tidyr/dplyr

dat %>% 
  gather(temp, score, starts_with("Score")) %>% 
  unite(temp1, Time, temp, sep = ".") %>% 
  spread(temp1, score)

答案 1 :(得分:22)

使用reshape2

library(reshape2)
dcast(melt(dat), Person ~ Time + variable)

产地:

Using Person, Time as id variables
  Person Post_Score1 Post_Score2 Post_Score3 Pre_Score1 Pre_Score2 Pre_Score3
1   greg          79          78        83.5         83         81       87.0
2  sally          82          81        86.5         75         74       79.5
3    sue          78          78        83.0         82         79       85.5

答案 2 :(得分:18)

使用dcast包中的data.table

library(data.table)#v1.9.5+
dcast(setDT(dat), Person~Time, value.var=paste0("Score", 1:3))

reshape来自baseR

reshape(as.data.frame(dat), idvar='Person', timevar='Time',direction='wide')

答案 3 :(得分:1)

我为自己做了一个基准测试,如果有兴趣,可以在这里发布:

代码

从OP,三个变量,两个时间点中选择设置。但是,数据帧的大小从1,000行到100,000行不等。

library(magrittr)
library(data.table)
library(bench)

f1 <- function(dat) {
    tidyr::gather(dat, key = "key", value = "value", -Person, -Time) %>% 
        tidyr::unite("id", Time, key, sep = ".") %>%
        tidyr::spread(id, value)
}

f2 <- function(dat) {
    reshape2::dcast(melt(dat, id.vars = c("Person", "Time")), Person ~ Time + variable)
}

f3 <- function(dat) {
    dcast(melt(dat, id.vars = c("Person", "Time")), Person ~ Time + variable)
}

create_df <- function(rows) {
    dat <- expand.grid(Person = factor(1:ceiling(rows/2)),
                       Time = c("1Pre", "2Post"))
    dat$Score1 <- round(rnorm(nrow(dat), mean = 80, sd = 4), 0)
    dat$Score2 <- round(jitter(dat$Score1, 15), 0)
    dat$Score3 <- 5 + (dat$Score1 + dat$Score2)/2
    return(dat)
}

结果

如您所见,reshape2比tidyr快一点,可能是因为tidyr的开销更大。重要的是,data.table的优点是> 10,000行。

press(
    rows = 10^(3:5),
    {
        dat <- create_df(rows)
        dat2 <- copy(dat)
        setDT(dat2)
        bench::mark(tidyr     = f1(dat),
                    reshape2  = f2(dat),
                    datatable = f3(dat2),
                    check = function(x, y) all.equal(x, y, check.attributes = FALSE),
                    min_iterations = 20
        )
    }
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 9 x 11
#>   expression   rows      min     mean   median      max `itr/sec` mem_alloc
#>   <chr>       <dbl> <bch:tm> <bch:tm> <bch:tm> <bch:tm>     <dbl> <bch:byt>
#> 1 tidyr        1000    5.7ms   6.13ms   6.02ms  10.06ms    163.      2.78MB
#> 2 reshape2     1000   2.82ms   3.09ms   2.97ms   8.67ms    323.       1.7MB
#> 3 datatable    1000   3.82ms      4ms   3.92ms   8.06ms    250.      2.78MB
#> 4 tidyr       10000  19.31ms  20.34ms  19.95ms  22.98ms     49.2     8.24MB
#> 5 reshape2    10000  13.81ms   14.4ms   14.4ms   15.6ms     69.4    11.34MB
#> 6 datatable   10000  14.56ms  15.16ms  14.91ms  18.93ms     66.0     2.98MB
#> 7 tidyr      100000 197.24ms 219.69ms 205.27ms 268.92ms      4.55   90.55MB
#> 8 reshape2   100000 164.02ms 195.32ms 176.31ms 284.77ms      5.12  121.69MB
#> 9 datatable  100000  51.31ms  60.34ms  58.36ms 113.69ms     16.6    27.36MB
#> # ... with 3 more variables: n_gc <dbl>, n_itr <int>, total_time <bch:tm>

reprex package(v0.2.1)于2019-02-27创建