将多个变量的重复度量扩展为宽格式时,NA值和多余的行是什么?

时间:2018-09-19 04:30:34

标签: r dplyr

使用下面的数据(包含在dput中),我对三个人的重复纬度和经度位置有不同的看法,并希望使用dplyr将其分布成较宽的格式。

数据如下:

> head(Dat)
  IndIDII      IndYear  WintLat  WintLong
1 BHS_265 BHS_265-2015 47.61025 -112.7210
2 BHS_265 BHS_265-2016 47.59884 -112.7089
3 BHS_770 BHS_770-2016 42.97379 -109.0400
4 BHS_770 BHS_770-2017 42.97129 -109.0367
5 BHS_770 BHS_770-2018 42.97244 -109.0509
6 BHS_377 BHS_377-2015 43.34744 -109.4821

This post提供了一个非常实用的解决方案。但是,我无法获得理想的结果。修改代码,我有以下内容:

Dat %>%  
  group_by(IndIDII) %>%
  #Make YearNum (as intiger not calnader year) for each IndIDII
  mutate(YearNum = row_number()) %>% 
  gather(Group, LatLong, c(WintLat,  WintLong)) %>% 
  unite(GroupNew, YearNum, Group, sep = "-") %>% 
  spread(GroupNew, LatLong) %>% 
  as.data.frame()

这将产生几乎正确的结果,但是每个IndIDII都有多个行,每个行都包含经度和纬度,为期一年。

  IndIDII      IndYear 1-WintLat 1-WintLong 2-WintLat 2-WintLong 3-WintLat 3-WintLong 4-WintLat 4-WintLong
1 BHS_265 BHS_265-2015  47.61025  -112.7210        NA         NA        NA         NA        NA         NA
2 BHS_265 BHS_265-2016        NA         NA  47.59884  -112.7089        NA         NA        NA         NA
3 BHS_377 BHS_377-2015  43.34744  -109.4821        NA         NA        NA         NA        NA         NA
4 BHS_377 BHS_377-2016        NA         NA  43.35559  -109.4445        NA         NA        NA         NA
5 BHS_377 BHS_377-2017        NA         NA        NA         NA  43.35195  -109.4566        NA         NA
6 BHS_377 BHS_377-2018        NA         NA        NA         NA        NA         NA  43.34765  -109.4892
7 BHS_770 BHS_770-2016  42.97379  -109.0400        NA         NA        NA         NA        NA         NA
8 BHS_770 BHS_770-2017        NA         NA  42.97129  -109.0367        NA         NA        NA         NA
9 BHS_770 BHS_770-2018        NA         NA        NA         NA  42.97244  -109.0509        NA         NA

我试图将IndIDII的所有经度和纬度都放在一行(即宽格式)中,如下所示。当个人的年数少于最大年限时,将显示NA值。我怀疑问题出在GroupNew变量上,并尝试了其他选项,但无济于事...

enter image description here

Dat <- structure(list(IndIDII = c("BHS_265", "BHS_265", "BHS_770", "BHS_770", 
"BHS_770", "BHS_377", "BHS_377", "BHS_377", "BHS_377"), IndYear = c("BHS_265-2015", 
"BHS_265-2016", "BHS_770-2016", "BHS_770-2017", "BHS_770-2018", 
"BHS_377-2015", "BHS_377-2016", "BHS_377-2017", "BHS_377-2018"
), WintLat = c(47.6102519805014, 47.5988417247191, 42.9737859090909, 
42.9712914772727, 42.9724390816327, 43.3474354347826, 43.3555934579439, 
43.3519543396226, 43.3476466990291), WintLong = c(-112.720994832869, 
-112.708887595506, -109.039964727273, -109.036693522727, -109.050923061224, 
-109.482114456522, -109.444522149533, -109.45659254717, -109.489241553398
)), class = "data.frame", row.names = c(NA, -9L))

1 个答案:

答案 0 :(得分:1)

您快到了。 latlong进入不同的行,因为它们的IndYear不同。由于您只保留最后IndYear中每个IndiDII的{​​{1}}的第一个值,因此添加data.frame将为您提供所需的结果。

IndYear = first(IndYear)