算法 - 所有节点的树中最大距离

时间:2016-04-03 19:05:52

标签: algorithm search tree

因此,找到树中两个节点之间的最长路径相当容易。但我想要的是找到从节点x到树中另一个节点的最长路径,对于所有x

此问题也可以通过以下方式表示:计算您可以从给定树中生成的所有有根树的高度。

当然,一种方法是对树中的所有节点执行BFS / DFS,并记住每个节点找到的最远节点。然而,这导致O(N 2 )。有可能做得更好吗?

编辑:回顾一下,我的问题是如何找到图表中最长的路径。这是如何找到包含给定节点x FOR ALL 节点x的最长路径 BETTER THAN O(N 2 < / sup>)时间复杂度,如果可能的话。

3 个答案:

答案 0 :(得分:1)

是的,有O(n)算法。

将树视为无根 - 只是一个图表,其中每个节点都具有不形成循环的双向边。

对于具有相邻节点的给定节点p,例如a_i,我们将计算高度Hpa_i。高度Hpa_i是具有根p 的子树的高度(即,对于算法的这部分,我们暂时考虑根节子树),其通过将节点a_i视为p的父节点而获得。

如果您对从每个节点到另一个节点的最长路径感兴趣(您的问题及其标题会让您对实际尝试计算的内容产生疑问),那么它只是最大{H​​pa_i为了所有我。相应的i值给出了最长的路径。

如果另一方面,您对最长路径 p感兴趣,那么这将是从{len(p - a_i)+ Ha_ip中选择的最大对的总和所有i},i的两个对应值给出了最长的路径本身。

因此,如果我们有每个节点的高度,那么获得最终结果就是一个简单的O(n)工作。

仅用于计算所有节点的高度。为此,请从特殊的深度优先搜索开始。它接受2个节点作为参数。第一个p是被搜索的节点,第二个q \ in {a_i}是当前被认为是p的父节点的相邻节点。设U是将节点对带到高度的映射:(p,q) - &gt; HPQ

function search_and_label(p, q)
  if ((p, q) maps to height Hpq in U ) { return Hpq }
  if (p == null) { add (p, q) -> 0 to U and return 0 }
  let h = max(all x adjacent to p, not equal to q) {
            len(p--x) + search_and_label(x, p)
          }
  add (p, q) -> h to U
  return h

现在我们可以找到所有的高度。

 Add mappings (p, x)->null to U for all nodes p and adjacent nodes x
 Also add a mapping (p, z)->null to U for all nodes p having < 3 adjacent
 while (U contains a mapping of the form (p, x)->null) 
   search_and_label(p, x) // this replaces the null mapping with a height

这也是一个O(n)计算,因为它在每条边上消耗不变的工作量,并且树中的边数是n-1。

<强>代码

今天下雨了,所以这里有一些代码生成一个随机树,并在O(n)时间内用最长的路径信息标记它。首先是典型的输出。每个节点都标有自己的编号,然后是包含它的最长路径的长度,后跟该路径上相邻节点的编号。小边标签是高度信息。首先是相反子树的高度以及该子树中最长路径的节点:

Decorated Tree

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;

/**
 * An undirected graph. It has a builder that fills the graph with a random
 * unrooted tree. And it knows how to decorate itself with longest path
 * information when it's such a tree.
 */
class Graph {

  /**
   * Edge p--q is represented as edges[p][q]=dq and edges[q][p]=dp, where dq and
   * dp are node data. They describe the respective end of the edge:
   * <ul>
   * <li>dq.len == dp.len, the edge length
   * <li>dq.h is the height of subtree rooted at p with q as parent.
   * <li>dq.next is the child of p (with respect to parent q) rooting the max
   * height subtree.
   * </ul>
   */
  final Map<Node, Map<Node, EdgeData>> edges = new HashMap<>();

  /**
   * A node in the graph.
   */
  static class Node {

    final int id; // Unique node id.
    Node a, b;    // Adjacent nodes on longest path.
    double len;   // Length of longest path.

    Node(int i) {
      this.id = i;
    }
  }

  /**
   * Data associated with one end of an edge in the graph.
   */
  static class EdgeData {

    final double len;  // Edge length.
    Double h;          // Subtree height.
    Node next;         // Next node on max length path to leaf.

    EdgeData(double len) {
      this.len = len;
    }
  }

  /**
   * Add a new node to the graph and return it.
   */
  Node addNode() {
    Node node = new Node(currentNodeIndex++);
    edges.put(node, new HashMap<>());
    return node;
  }
  private int currentNodeIndex = 0;

  /**
   * Add an undirected edge between nodes x and y.
   */
  void addEdge(Node x, Node y, double len) {
    edges.get(x).put(y, new EdgeData(len));
    edges.get(y).put(x, new EdgeData(len));
  }

  /**
   * Decorate subtree rooted at p assuming adjacent node q is its parent.
   * Decorations are memos. No subtree is decorated twice.
   */
  EdgeData decorateSubtree(Node p, Node q) {
    Map<Node, EdgeData> adjacent = edges.get(p);
    EdgeData data = adjacent.get(q);
    if (data.h == null) {
      data.h = 0.0;
      for (Map.Entry<Node, EdgeData> x : adjacent.entrySet()) {
        if (x.getKey() != q) {
          double hNew = x.getValue().len + decorateSubtree(x.getKey(), p).h;
          if (hNew > data.h) {
            data.h = hNew;
            data.next = x.getKey();
          }
        }
      }
    }
    return data;
  }

  /**
   * Decorate node p with longest path information. Decorations are memos. No
   * node nor its associated subtrees are decorated twice.
   */
  Node decorateNode(Node p) {
    if (p.a == null) {
      double ha = 0.0, hb = 0.0;
      for (Map.Entry<Node, EdgeData> x : edges.get(p).entrySet()) {
        double hNew = x.getValue().len + decorateSubtree(x.getKey(), p).h;
        // Track the largest two heights and corresponding subtrees.
        if (hNew > ha) {
          p.b = p.a;
          hb = ha;
          p.a = x.getKey();
          ha = hNew;
        } else if (hNew > hb) {
          p.b = x.getKey();
          hb = hNew;
        }
      }
      p.len = ha + hb;
    }
    return p;
  }

  /**
   * Decorate the entire tree. This isn't necessary if the lazy decorators are
   * used as accessors.
   */
  void decorateAll() {
    for (Node p : edges.keySet()) {
      decorateNode(p);
    }
  }

  /**
   * Random tree builder. Parameters are a maximum edge length, tree radius in
   * number of edges, and partitions p[k] giving probabilities of branching with
   * degree k.
   */
  class RandomTreeBuilder {

    final Random gen = new Random();
    final long seed;
    final float[] partitions;
    final int maxLen;
    final int radius;

    RandomTreeBuilder(long seed, float[] partitions, int maxLen, int radius) {
      this.seed = seed;
      this.partitions = partitions;
      this.maxLen = maxLen;
      this.radius = radius;
    }

    private void growTree(Node p, int radius) {
      if (radius > 0) {
        float random = gen.nextFloat();
        float pSum = 0f;
        for (float partition : partitions) {
          pSum += partition;
          if (random < pSum) {
            return;
          }
          Node q = addNode();
          addEdge(p, q, 1 + gen.nextInt(maxLen));
          growTree(q, radius - 1);
        }
      }
    }

    /**
     * Build a tree in the graph. Any existing nodes and edges are erased.
     */
    void build() {
      if (seed != 0) {
        gen.setSeed(seed);
      }
      edges.clear();
      Node p = addNode();
      Node q = addNode();
      addEdge(p, q, 1 + gen.nextInt(maxLen));
      growTree(p, radius);
      growTree(q, radius);
    }
  }

  class TreePrinter {

    PrintStream stream;

    TreePrinter(PrintStream stream) {
      this.stream = stream;
    }

    /**
     * Print graph in the GraphViz DOT language.
     */
    void print() {
      stream.println("graph tree {");
      stream.println(" graph [layout = twopi overlap=false ranksep=1.7]");
      Node p = edges.keySet().iterator().next();
      Node q = edges.get(p).keySet().iterator().next();
      printEdge(p, q);
      print(p, q);
      print(q, p);
      for (Node x : edges.keySet()) {
        printNode(decorateNode(x));
      }
      stream.println("}");
    }

    /**
     * Print edge {@code p--q} in the GraphViz DOT language.
     */
    private void printEdge(Node p, Node q) {
      EdgeData dq = decorateSubtree(p, q);
      EdgeData dp = decorateSubtree(q, p);
      stream.format(" n%d--n%d [label=\"%.0f\" fontsize=8 "
          + "headlabel=\"%.0f:%s\" taillabel=\"%.0f:%s\"]\n",
          p.id, q.id, dq.len,
          dp.h, dp.next == null ? "-" : dp.next.id,
          dq.h, dq.next == null ? "-" : dq.next.id);
    }

    /**
     * Print node p in the GraphViz DOT language.
     */
    private void printNode(Node p) {
      stream.format(" n%d [ label=\"%d (%.0f:%s-%s)\" fontsize=10 ]\n",
          p.id, p.id, p.len,
          p.a == null ? "-" : p.a.id, p.b == null ? "-" : p.b.id);
    }

    /**
     * Print the sub-tree rooted at node p, treating node q as its parent.
     */
    private void print(Node p, Node q) {
      for (Node x : edges.get(p).keySet()) {
        if (x != q) {
          printEdge(p, x);
          print(x, p);
        }
      }
    }
  }

  public static void main(String[] args) throws FileNotFoundException {
    PrintStream stream = args.length > 0
        ? new PrintStream(new File(args[0]))
        : System.out;
    Graph graph = new Graph();
    graph.new RandomTreeBuilder(42L, new float[]{0.3f, 0.1f, 0.3f, 0.2f}, 10, 5)
        .build();
    graph.new TreePrinter(stream).print();
  }
}

答案 1 :(得分:0)

您的问题减少到找到树中最长的路径。这也称为树的直径。

这是一个研究得很好的主题,有很多资源提供O(n)算法,其中n是图中节点的数量。

请参阅thisthis

答案 2 :(得分:0)

这是我的解决方案..

第一次传递以递归方式遍历所有节点,并为树中的每个节点设置M(最大深度)。

M(X) = 0 IF X DOES NOT EXIST
EXIST(X) = 1 IF X EXISTS, 0 OTHERWISE

M = MAX(EXIST(LEFT) + M(LEFT), EXIST(RIGHT) + M(RIGHT))

第二次传递以递归方式遍历所有节点并设置R(最大距离)树中的任何根(根是一个至少有一个孩子的节点),从子项中取出最大值2的总和,然后在任一子项上存在路径的距离。

IF SUM(EXIST(..)) = 0 THEN R = 0
IF SUM(EXIST(..)) = 1 THEN R = X.M + 1 WHERE EXIST(X) = 1

R = SUM(MAX2(x,y: x.M >= y.M >= ..)) + EXIST(x) + EXIST(y)

R: the node max distance through.
M: the node max depth.

最终通过以递归方式遍历所有节点,并在树中找到R的最大值。

R(NULL) = 0
R(THIS) = R OF THE CURRENT NODE

S = MAX(R(THIS), S(CHILD1), .. S(CHILDX))

<强>复杂性

TIME = N + N + N = 3N

TIME ~ O(N)