我正在使用立体声系统,因此我试图通过三角测量获得某些点的世界坐标。
我的相机呈现一个角度,Z轴方向(深度方向)与我的表面不正常。这就是为什么当我观察平面时,我得不到恒定的深度而是“线性”变化,对吗?我希望从基线方向深入......如何重新投射?
我的代码与我的投影数组和三角函数:
#C1 and C2 are the cameras matrix (left and rig)
#R_0 and T_0 are the transformation between cameras
#Coord1 and Coord2 are the correspondant coordinates of left and right respectively
P1 = np.dot(C1,np.hstack((np.identity(3),np.zeros((3,1)))))
P2 =np.dot(C2,np.hstack(((R_0),T_0)))
for i in range(Coord1.shape[0])
z = cv2.triangulatePoints(P1, P2, Coord1[i,],Coord2[i,])
--------编辑后-----------
感谢scribbleink,所以我尝试应用您的提案。但我认为我有一个错误,因为它不能很好地工作,你可以在下面看到。并且点云似乎被弯曲并朝向图像的边缘弯曲。
U, S, Vt = linalg.svd(F)
V = Vt.T
#Right epipol
U[:,2]/U[2,2]
# The expected X-direction with C1 camera matri and C1[0,0] the focal length
vecteurX = np.array([(U[:,2]/U[2,2])[0],(U[:,2]/U[2,2])[1],C1[0,0]])
vecteurX_unit = vecteurX/np.sqrt(vecteurX[0]**2 + vecteurX[1]**2 + vecteurX[2]**2)
# The expected Y axis :
height = 2048
vecteurY = np.array([0, height -1, 0])
vecteurY_unit = vecteurY/np.sqrt(vecteurY[0]**2 + vecteurY[1]**2 + vecteurY[2]**2)
# The expected Z direction :
vecteurZ = np.cross(vecteurX,vecteurY)
vecteurZ_unit = vecteurZ/np.sqrt(vecteurZ[0]**2 + vecteurZ[1]**2 + vecteurZ[2]**2)
#Normal of the Z optical (the current Z direction)
Zopitcal = np.array([0,0,1])
cos_theta = np.arccos(np.dot(vecteurZ_unit, Zopitcal)/np.sqrt(vecteurZ_unit[0]**2 + vecteurZ_unit[1]**2 + vecteurZ_unit[2]**2)*np.sqrt(Zopitcal[0]**2 + Zopitcal[1]**2 + Zopitcal[2]**2))
sin_theta = (np.cross(vecteurZ_unit, Zopitcal))[1]
#Definition of the Rodrigues vector and use of cv2.Rodrigues to get rotation matrix
v1 = Zopitcal
v2 = vecteurZ_unit
v_rodrigues = v1*cos_theta + (np.cross(v2,v1))*sin_theta + v2*(np.cross(v2,v1))*(1. - cos_theta)
R = cv2.Rodrigues(v_rodrigues)[0]
答案 0 :(得分:5)
您的预期z方向对于重建方法是任意的。通常,您有一个旋转矩阵,可以从您想要的方向旋转左摄像机。你可以轻松地构建那个矩阵,然后你需要做的就是将你的重建点乘以R的转置。
答案 1 :(得分:5)
要添加到fireant的响应,这里有一个候选解决方案,假设预期的X方向与连接两个摄像机投影中心的线重合。
实用说明: 在我的实践经验中,如果没有相当大的努力,期望平面物体与立体基线精确对准是不可能的。需要进行一些平面拟合和额外的旋转。
一次性努力: 这取决于你是否需要这样做一次,例如对于一次性校准,在这种情况下只需实时进行此估算过程,然后旋转立体相机对,直到深度图方差最小化。然后锁定你的相机位置,并祈祷有人不会碰到它。
<强>重复性:强> 如果您需要将估计的深度图对齐到真正任意的Z轴,这些Z轴会针对捕获的每个新帧进行更改,那么您应该考虑在平面估算方法上投入时间并使其更加稳健。