我尝试将卡方检验和t检验的幂函数与一个特定值进行比较,我的总体目标是证明t检验更强大(因为它对分布有一个假设) )。我使用pwr软件包来计算每个函数的功效,然后编写两个函数并绘制结果。 但是,我没有发现t检验比卡方检验更好,我对结果感到困惑。我花了几个小时,所以每一个帮助都非常感激。
代码是否错误,我对电源功能有错误的了解,或者包装中是否有错误?
library(pwr)
#mu is the value for which the power is calculated
#no is the number of observations
#function of the power of the t-test with a h0 of .2
g <- function(mu, alpha, no) { #calculate the power of a particular value for the t-test with h0=.2
p <- mu-.20
sigma <- sqrt(.5*(1-.5))
pwr.t.test(n = no, d = p/sigma, sig.level = alpha, type = "one.sample", alternative="greater")$power # d is the effect size p/sigma
}
#chi squared test
h <- function(mu, alpha, no, degree) {#calculate the power of a particular value for the chi squared test
p01 <- .2 # these constructs the effect size (which is a bit different for the chi squared)
p02 <- .8
p11 <-mu
p12 <- 1-p11
effect.size <- sqrt(((p01-p11)^2/p01)+((p02-p12)^2/p02)) # effect size
pwr.chisq.test(N=no, df=degree, sig.level = alpha, w=effect.size)$power
}
#create a diagram
plot(1, 1, type = "n",
xlab = expression(mu),
xlim = c(.00, .75),
ylim = c(0, 1.1),
ylab = expression(1-beta),
axes=T, main="Power function t-Test and Chi-squared-Test")
axis(side = 2, at = c(0.05), labels = c(expression(alpha)), las = 3)
axis(side = 1, at = 3, labels = expression(mu[0]))
abline(h = c(0.05, 1), lty = 2)
legend(.5,.5, # places a legend at the appropriate place
c("t-Test","Chi-square-Test"), # puts text in the legend
lwd=c(2.5,2.5),col=c("black","red"))
curve(h(x, alpha = 0.05, no = 100, degree=1), from = .00, to = .75, add = TRUE, col="red",lwd=c(2.5,2.5) )
curve(g(x, alpha = 0.05, no = 100), from = .00, to = .75, add = TRUE, lwd=c(2.5,2.5))
提前多多感谢!
答案 0 :(得分:0)
如果我理解正确的问题,那么您正在测试二项分布,其中null的平均值等于0.2,而替代值为null大于0.2?如果是这样,那么在函数g
的第2行,不应该是sigma <- sqrt(.2*(1-.2))
而不是sigma <- sqrt(.5*(1-.5))
?这样,您的标准偏差将会更小,从而导致更大的测试统计数据,从而导致更小的p值,从而产生更高的功率。