在OpenCV中搜索具有小角度范围的线

时间:2010-08-09 22:20:40

标签: opencv hough-transform

我在OpenCV中使用Hough变换来检测线条。但是,我事先知道我只需要在非常有限的角度范围内(大约10度左右)就行。我在一个性能非常敏感的设置中这样做,所以我想避免在其他角度检测线路所花费的额外工作,我事先知道我不关心的线路。

我可以从OpenCV中提取Hough源,只是破解它来获取min_rho和max_rho参数,但我想要一个不那么脆弱的方法(必须手动更新我的代码与每个OpenCV更新等)。

这里最好的方法是什么?

3 个答案:

答案 0 :(得分:3)

如果使用概率霍夫变换,那么输出的形式为cvPoint,每个用于行[0]和行[1]参数。我们可以通过pt1.x,pt1.y和pt2.x以及pt2.y对这两个点中的每个点进行x和y协调。  然后使用简单的公式来找到一条线的斜率 - (y2-y1)/(x2-x1)。采用arctan(tan inverse)将产生以弧度表示的角度。然后只需从获得的每条霍夫线的值中滤出所需的角度。

答案 1 :(得分:2)

好吧,我修改了icvHoughlines函数以获得一定范围的角度。我确信有更简洁的方式可以使用内存分配,但是从180度到60度的角度范围内,我的速度从100毫秒增加到33毫秒,所以我很满意。

注意此代码也输出累加器值。此外,我只输出1行,因为这符合我的目的,但实际上并没有增益。

static void
icvHoughLinesStandard2( const CvMat* img, float rho, float theta,
                       int threshold, CvSeq *lines, int linesMax )
{
    cv::AutoBuffer<int> _accum, _sort_buf;
    cv::AutoBuffer<float> _tabSin, _tabCos;

    const uchar* image;
    int step, width, height;
    int numangle, numrho;
    int total = 0;
    float ang;
    int r, n;
    int i, j;
    float irho = 1 / rho;
    double scale;

    CV_Assert( CV_IS_MAT(img) && CV_MAT_TYPE(img->type) == CV_8UC1 );

    image = img->data.ptr;
    step = img->step;
    width = img->cols;
    height = img->rows;

    numangle = cvRound(CV_PI / theta);
    numrho = cvRound(((width + height) * 2 + 1) / rho);

    _accum.allocate((numangle+2) * (numrho+2));
    _sort_buf.allocate(numangle * numrho);
    _tabSin.allocate(numangle);
    _tabCos.allocate(numangle);
    int *accum = _accum, *sort_buf = _sort_buf;
    float *tabSin = _tabSin, *tabCos = _tabCos;

    memset( accum, 0, sizeof(accum[0]) * (numangle+2) * (numrho+2) );

    // find n and ang limits (in our case we want 60 to 120
    float limit_min = 60.0/180.0*PI;
    float limit_max = 120.0/180.0*PI;

    //num_steps = (limit_max - limit_min)/theta;
    int start_n = floor(limit_min/theta);
    int stop_n = floor(limit_max/theta);

    for( ang = limit_min, n = start_n; n < stop_n; ang += theta, n++ )
    {
        tabSin[n] = (float)(sin(ang) * irho);
        tabCos[n] = (float)(cos(ang) * irho);
    }



    // stage 1. fill accumulator
    for( i = 0; i < height; i++ )
        for( j = 0; j < width; j++ )
        {
            if( image[i * step + j] != 0 )
                        //
        for( n = start_n; n < stop_n; n++ )
                {
                    r = cvRound( j * tabCos[n] + i * tabSin[n] );
                    r += (numrho - 1) / 2;
                    accum[(n+1) * (numrho+2) + r+1]++;
                }
        }



    int max_accum = 0;
    int max_ind = 0;

    for( r = 0; r < numrho; r++ )
    {
        for( n = start_n; n < stop_n; n++ )
        {
            int base = (n+1) * (numrho+2) + r+1;
            if (accum[base] > max_accum)
            {
                max_accum = accum[base];
                max_ind = base;
            }
        }
    }   

    CvLinePolar2 line;
    scale = 1./(numrho+2);
    int idx = max_ind;
    n = cvFloor(idx*scale) - 1;
    r = idx - (n+1)*(numrho+2) - 1;
    line.rho = (r - (numrho - 1)*0.5f) * rho;
    line.angle = n * theta;
    line.votes = accum[idx];
    cvSeqPush( lines, &line );

}

答案 2 :(得分:0)

我认为使用标准HoughLines(...)函数更自然,它直接在rho和theta术语中收集线条并从中选择nessessary角度范围,而不是从段端点重新计算角度