有没有办法加快这个简单的PyMC模型?在20-40个数据点上,需要大约5-11秒才能适应。
import pymc
import time
import numpy as np
from collections import OrderedDict
# prior probability of rain
p_rain = 0.5
variables = OrderedDict()
# rain observations
data = [True, True, True, True, True,
False, False, False, False, False]*4
num_steps = len(data)
p_rain_given_rain = 0.9
p_rain_given_norain = 0.2
p_umbrella_given_rain = 0.8
p_umbrella_given_norain = 0.3
for n in range(num_steps):
if n == 0:
# Rain node at time t = 0
rain = pymc.Bernoulli("rain_%d" %(n), p_rain)
else:
rain_trans = \
pymc.Lambda("rain_trans",
lambda prev_rain=variables["rain_%d" %(n-1)]: \
prev_rain*p_rain_given_rain + (1-prev_rain)*p_rain_given_norain)
rain = pymc.Bernoulli("rain_%d" %(n), p=rain_trans)
umbrella_obs = \
pymc.Lambda("umbrella_obs",
lambda rain=rain: \
rain*p_umbrella_given_rain + (1-rain)*p_umbrella_given_norain)
umbrella = pymc.Bernoulli("umbrella_%d" %(n), p=umbrella_obs,
observed=True,
value=data[n])
variables["rain_%d" %(n)] = rain
variables["umbrella_%d" %(n)] = umbrella
print "running on %d points" %(len(data))
all_vars = variables.values()
t_start = time.time()
model = pymc.Model(all_vars)
m = pymc.MCMC(model)
m.sample(iter=2000)
t_end = time.time()
print "\n%.2f secs to run" %(t_end - t_start)
只有40个数据点,运行需要11秒:
running on 40 points
[-----------------100%-----------------] 2000 of 2000 complete in 11.5 sec
11.54 secs to run
(80分需要20秒)。这是一个玩具的例子。确定转换的Lambda()
内的表达式实际上更复杂。这种基本代码结构是灵活的(而使用转换矩阵编码模型的灵活性较低)。有没有办法保持类似的代码结构,但获得更好的性能?如有必要,很高兴切换到PyMC3。感谢。
答案 0 :(得分:4)
Markov-Chain Monte Carlo是一个已知的连续问题。
这意味着它的运行时间与健身功能的步数和运行时间成正比。
但是你可以做一些技巧:
更难的方法:
最后还有很多研究: