我有兴趣将PyMC应用于模型平均。我的目标是估计许多线性模型和它们之间的平均估计,通过它们的后验模型概率加权。我目前正在使用贝叶斯信息准则(BIC)来估计我的数据的可能性(因此,我的分析不完全贝叶斯)。我已经使用我自己的一个脚本成功模拟了马尔可夫模型链,但我想使用PyMC,因为它看起来像是一个很棒的工具。
在我迄今为止的尝试中,我还没有正确地形成马尔可夫链。我没有比其他人更经常访问后部重量更高的模型。我将在下面包含示例代码。另请参阅IPython笔记本here!在github上进行数学标记和编码。
import numpy as np
from pymc import stochastic, DiscreteMetropolis, MCMC
import statsmodels.api as sm
import pandas as pd
import random
def pack(alist, rank):
binary = [str(1) if i in alist else str(0) for i in xrange(0,rank)]
string = '0b1'+''.join(binary)
return int(string, 2)
def unpack(integer):
string = bin(integer)[3:]
return [int(i) for i in xrange(len(string)) if string[i]=='1']
def make_bma():
# Simulating Data
size = 100
rank = 20
X = 10*np.random.randn(size, rank)
error = 30*np.random.randn(size,1)
coefficients = np.array([10, 2, 2, 2, 2, 2]).reshape((6,1))
y = np.dot(sm.add_constant(X[:,:5], prepend=True), coefficients) + error
# Number of allowable regressors
predictors = [3,4,5,6,7]
@stochastic(dtype=int)
def regression_model():
def logp(value):
columns = unpack(value)
x = sm.add_constant(X[:,columns], prepend=True)
corr = np.corrcoef(x[:,1:], rowvar=0)
prior = np.linalg.det(corr)
ols = sm.OLS(y,x).fit()
posterior = np.exp(-0.5*ols.bic)*prior
return np.log(posterior)
def random():
k = np.random.choice(predictors)
columns = sorted(np.random.choice(xrange(0,rank), size=k, replace=False))
return pack(columns, rank)
class ModelMetropolis(DiscreteMetropolis):
def __init__(self, stochastic):
DiscreteMetropolis.__init__(self, stochastic)
def propose(self):
'''considers a neighborhood around the previous model,
defined as having one regressor removed or added, provided
the total number of regressors coincides with predictors
'''
# Building set of neighboring models
last = unpack(self.stochastic.value)
last_indicator = np.zeros(rank)
last_indicator[last] = 1
last_indicator = last_indicator.reshape((-1,1))
neighbors = abs(np.diag(np.ones(rank)) - last_indicator)
neighbors = neighbors[:,np.any([neighbors.sum(axis=0) == i \
for i in predictors], axis=0)]
neighbors = pd.DataFrame(neighbors)
# Drawing one model at random from the neighborhood
draw = random.choice(xrange(neighbors.shape[1]))
self.stochastic.value = pack(list(neighbors[draw][neighbors[draw]==1].index), rank)
# def step(self):
#
# logp_p = self.stochastic.logp
#
# self.propose()
#
# logp = self.stochastic.logp
#
# if np.log(random.random()) > logp_p - logp:
#
# self.reject()
return locals()
if __name__ == '__main__':
model = make_bma()
M = MCMC(model)
M.use_step_method(model['ModelMetropolis'], model['regression_model'])
M.sample(iter=5000, burn=1000, thin=1)
model_chain = M.trace("regression_model")[:]
from collections import Counter
counts = Counter(model_chain).items()
counts.sort(reverse=True, key=lambda x: x[1])
for f in counts[:10]:
columns = unpack(f[0])
print('Visits:', f[1])
print(np.array([1. if i in columns else 0 for i in range(0,M.rank)]))
print(M.coefficients.flatten())
X = sm.add_constant(M.X[:, columns], prepend=True)
corr = np.corrcoef(X[:,1:], rowvar=0)
prior = np.linalg.det(corr)
fit = sm.OLS(model['y'],X).fit()
posterior = np.exp(-0.5*fit.bic)*prior
print(fit.params)
print('R-squared:', fit.rsquared)
print('BIC', fit.bic)
print('Prior', prior)
print('Posterior', posterior)
print(" ")
答案 0 :(得分:2)
听起来你正在尝试做类似于可逆跳跃MCMC的事情,除了参数空间之外,你还要从模型空间中采样。 PyMC目前不会做rjMCMC,尽管它可能应该这样做。诀窍是在模型之间移动时考虑尺寸的变化。如果您的模型数量适中,您可以使用指示器功能从模型中进行选择,所有模型都同时适合。