在训练cnn模型后,我想要显示重量或打印出重量,我该怎么办? 我甚至无法在训练后打印出变量。 谢谢!
答案 0 :(得分:33)
要显示权重,您可以使用tf.image_summary()
操作将卷积过滤器(或过滤器的一部分)转换为摘要原型,使用tf.train.SummaryWriter
将其写入日志,并且使用TensorBoard可视化日志。
我们假设您有以下(简化)计划:
filter = tf.Variable(tf.truncated_normal([8, 8, 3]))
images = tf.placeholder(tf.float32, shape=[None, 28, 28])
conv = tf.nn.conv2d(images, filter, strides=[1, 1, 1, 1], padding="SAME")
# More ops...
loss = ...
optimizer = tf.GradientDescentOptimizer(0.01)
train_op = optimizer.minimize(loss)
filter_summary = tf.image_summary(filter)
sess = tf.Session()
summary_writer = tf.train.SummaryWriter('/tmp/logs', sess.graph_def)
for i in range(10000):
sess.run(train_op)
if i % 10 == 0:
# Log a summary every 10 steps.
summary_writer.add_summary(filter_summary, i)
执行此操作后,您可以启动TensorBoard以显示/tmp/logs
中的日志,您将能够看到过滤器的可视化。
请注意,此技巧可将深度3滤镜显示为RGB图像(以匹配输入图像的通道)。如果您有更深层次的过滤器,或者将它们理解为颜色通道没有意义,您可以使用tf.split()
op在深度维度上拆分过滤器,并为每个深度生成一个图像摘要。
答案 1 :(得分:22)
就像@mrry所说,你可以使用tf.image_summary
。例如,对于cifar10_train.py
,您可以将此代码放在def train()
下的某个位置。请注意如何访问范围'conv1'
# Visualize conv1 features
with tf.variable_scope('conv1') as scope_conv:
weights = tf.get_variable('weights')
# scale weights to [0 255] and convert to uint8 (maybe change scaling?)
x_min = tf.reduce_min(weights)
x_max = tf.reduce_max(weights)
weights_0_to_1 = (weights - x_min) / (x_max - x_min)
weights_0_to_255_uint8 = tf.image.convert_image_dtype (weights_0_to_1, dtype=tf.uint8)
# to tf.image_summary format [batch_size, height, width, channels]
weights_transposed = tf.transpose (weights_0_to_255_uint8, [3, 0, 1, 2])
# this will display random 3 filters from the 64 in conv1
tf.image_summary('conv1/filters', weights_transposed, max_images=3)
如果您想在一个漂亮的网格中可视化所有conv1
过滤器,则必须自己将它们组织到网格中。我今天就这样做了,所以现在我想分享gist for visualizing conv1 as a grid
答案 2 :(得分:4)
您可以通过以下方式将值提取为numpy数组:
with tf.variable_scope('conv1', reuse=True) as scope_conv:
W_conv1 = tf.get_variable('weights', shape=[5, 5, 1, 32])
weights = W_conv1.eval()
with open("conv1.weights.npz", "w") as outfile:
np.save(outfile, weights)
请注意,您必须调整范围(在我的情况下为'conv1'
)和变量名称(在我的情况下为'weights'
)。
然后归结为可视化numpy数组。如何可视化numpy数组的一个例子是
#!/usr/bin/env python
"""Visualize numpy arrays."""
import numpy as np
import scipy.misc
arr = np.load('conv1.weights.npb')
# Get each 5x5 filter from the 5x5x1x32 array
for filter_ in range(arr.shape[3]):
# Get the 5x5x1 filter:
extracted_filter = arr[:, :, :, filter_]
# Get rid of the last dimension (hence get 5x5):
extracted_filter = np.squeeze(extracted_filter)
# display the filter (might be very small - you can resize the window)
scipy.misc.imshow(extracted_filter)
答案 3 :(得分:0)
使用 tensorflow 2 API
,有几个选项:
使用 get_weights()
函数提取的权重。
weights_n = model.layers[n].get_weights()[0]
使用 numpy()
转换函数提取偏差。
bias_n = model.layers[n].bias.numpy()