我使用着名的泰坦数据集玩过tensorflow的LinearClassifier数据。
(我的问题本身在底部 - 这是模型本身的所有代码)
所以我有我的专栏:
CONTINUOUS_COLS = ['Age', 'Fare']
CATEGORICAL_COLS = ['Sex', 'Pclass', 'Title']
LABELS_COL = 'Survived'
sex_col = sparse_column_with_keys('Sex', keys=['male', 'female'])
title_col = sparse_column_with_hash_bucket('Title', 10)
fare_class_col = sparse_column_with_keys('Pclass', keys=['1','2','3'])
age_col = real_valued_column('Age')
fare_col = real_valued_column('Fare')
我的输入功能:
def create_input_fn(df):
continous_features = {k: tf.constant(df[k].values) for k in CONTINUOUS_COLS}
categorical_features = {k : tf.SparseTensor(
indices=[[0,i] for i in range(df[k].size)],
values=df[k].values,
dense_shape=[df[k].size, 1]
) for k in CATEGORICAL_COLS}
feature_cols = {**continous_features, **categorical_features}
labels = tf.constant(df[LABELS_COL].values)
return feature_cols, labels
和我的模特:
clf = LinearClassifier(feature_columns=[sex_col, fare_class_col, age_col, fare_col, title_col],
optimizer=tf.train.FtrlOptimizer(
learning_rate=0.5,
l1_regularization_strength=1.0,
l2_regularization_strength=1.0),
model_dir=tempfile.TemporaryDirectory().name)
现在当我运行模型时,它确实是okaish,我想查看模型的权重以更好地可视化它们。
所以clf.weights_
存在(虽然它被列为已弃用),所以我只是手动将它们拉出来:
for var in clf.get_variable_names():
if var.endswith('weights'):
print(f'{var} -> {clf.get_variable_value(var)}')
我得到了一些不错的结果:
linear/Pclass/weights -> [[ 0. ]
[ 0. ]
[-0.01772301]]
linear/Sex/weights -> [[-0.07285357]
[ 0. ]]
linear/Title/weights -> [[ 0. ]
[ 0. ]
[ 0. ]
[-0.03760524]
[ 0. ]
[ 0. ]
[ 0. ]
[ 0. ]
[ 0. ]
[ 0. ]]
现在我的问题是 - 如何取出最初使用的键? 所以我可以更好地匹配数字,例如与性别相关 - 键最初映射到男性/女性。
谢谢!
答案 0 :(得分:0)
sparse_column_with_keys
:
sex_col.lookup_config.keys # ('male', 'female')
类似于:
matched = {}
weights = clf.get_variable_value('linear/Sex/weights') # np array
for index, key in enumerate(sex_col.lookup_config.keys):
matched[key] = weights[index]
并且在您dir(sex_col.lookup_config)
时还有一些其他有趣的属性,并检查方法文档字符串:Source for SparseColumn Feature classes
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/feature_column.py
我没有找出sparse_column_with_hash_bucket
如果教程中有tf.contrib.layers.bucketized_column
个age_buckets:
age_buckets.boundaries