我有一个使用邻接列表表示的有向图。但我遇到了麻烦。我想编写一个函数来计算每个顶点的indegree和outdegree。你能建议我用C ++解决吗? 这是我的源代码:
#include<iostream>
#include <list>
using namespace std;
// A directed graph using adjacency list representation
class Graph
{
int V; // No. of vertices in graph
list<int> *adj; // Pointer to an array containing adjacency lists
// A recursive function used by printAllPaths()
void printAllPathsUtil(int , int , bool [], int [], int &);
public:
Graph(int V); // Constructor
void addEdge(int u, int v);
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int u, int v)
{
adj[u].push_back(v); // Add v to u’s list.
}
答案 0 :(得分:1)
只需绘制一张图表,然后自己计算出indegree和outdegree。你会明白你需要做什么。 我会给出提示,以便你可以自己解决
<强>提示-1 强>
Outdegree是一个简单的节点。想一想邻接列表条目包含什么?这就是它的所有节点。得到它了!!
<强>提示-2 强>
在查看SW
年龄时,您还会关注NW
。因此#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define N 24
#define die(...) exit((fprintf(stderr, __VA_ARGS__), 1))
enum {NW, NE, SE, SW, NCORNER};
static const int dx[NCORNER] = {0, 1, 1, 0};
static const int dy[NCORNER] = {0, 0, 1, 1};
struct stype {
const char *name;
int start;
int end;
const char *path;
};
#define STYPE(X) \
X(None, -1, -1, "") \
X(WallN, NW, NE, "E1") \
X(WallE, NE, SE, "S1") \
X(WallS, SE, SW, "W1") \
X(WallW, SW, NW, "N1") \
X(QuarterNE, SE, NW, "W2 SW N2") \
X(QuarterSE, SW, NE, "N2 NW E2") \
X(QuarterSW, NW, SE, "E2 NE S2") \
X(QuarterNW, NE, SW, "S2 SE W2") \
X(SpikeN, NE, NW, "S2 SE SW N2") \
X(SpikeE, SE, NE, "W2 SW NW E2") \
X(SpikeS, SW, SE, "N2 NW NE S2") \
X(SpikeW, NW, SW, "E2 NE SE W2") \
X(Circle, NW, NW, "MM")
#define STYPE_STRUCT(Name, S1, S2, P) {#Name, S1, S2, P},
#define STYPE_ENUM(Name, S1, S2, P) Name,
enum {STYPE(STYPE_ENUM) MAX_STYPE};
static const struct stype stype[MAX_STYPE] = { STYPE(STYPE_STRUCT)};
int ctype[16][3] = {
/* 0 */ {Circle, None},
/* 1 */ {SpikeN, None},
/* 2 */ {SpikeE, None},
/* 3 */ {QuarterNE, None},
/* 4 */ {SpikeS, None},
/* 5 */ {WallW, WallE, None},
/* 6 */ {QuarterSE, None},
/* 7 */ {WallW, None},
/* 8 */ {SpikeW, None},
/* 9 */ {QuarterNW, None},
/* 10 */ {WallN, WallS, None},
/* 11 */ {WallS, None},
/* 12 */ {QuarterSW, None},
/* 13 */ {WallE, None},
/* 14 */ {WallN, None},
/* 15 */ { None},
};
struct seg {
int type;
int x;
int y;
};
struct pt {
int seg1;
int seg2;
};
int alive(int cell[N][N], int x, int y)
{
if (x < 0 || x >= N) return 0;
if (y < 0 || y >= N) return 0;
return cell[y][x];
}
void addpt(struct pt *pt, int seg)
{
if (pt->seg1 < 0) {
pt->seg1 = seg;
} else if (pt->seg2 < 0) {
pt->seg2 = seg;
} else {
die("Too many segments for point.\n");
}
}
int main(void)
{
int cell[N][N];
int count = 0;
int i, x, y;
for (y = 0; y < N; y++) {
for (x = 0; x < N; x++) {
int r = 1 + abs(N/2 - x) + abs(N/2 - y);
cell[y][x] = (rand() / 4 < RAND_MAX / r);
if (cell[y][x]) count++;
}
}
/* Create line segments */
struct seg seg[2 * count];
int nseg = 0;
for (y = 0; y < N; y++) {
for (x = 0; x < N; x++) {
int ix = 0;
if (cell[y][x] == 0) continue;
if (alive(cell, x, y - 1)) ix |= 1;
if (alive(cell, x + 1, y)) ix |= 2;
if (alive(cell, x, y + 1)) ix |= 4;
if (alive(cell, x - 1, y)) ix |= 8;
int *p = ctype[ix];
while (*p != None) {
if (nseg >= 2 * count) die("Segment overflow\n");
seg[nseg].x = x;
seg[nseg].y = y;
seg[nseg].type = *p++;
nseg++;
}
}
}
/* determine start and end points of segments */
struct pt pt[N + 1][N + 1];
memset(pt, -1, sizeof(pt));
for (i = 0; i < nseg; i++) {
int tp = seg[i].type;
int s = stype[tp].start;
int e = stype[tp].end;
x = seg[i].x;
y = seg[i].y;
addpt(&pt[y + dy[s]][x + dx[s]], i);
addpt(&pt[y + dy[e]][x + dx[e]], i);
}
/* set up PostScript header */
puts("%!PS-Adobe 3.0");
puts("/A 10 def");
puts("/A2 A 2 mul def");
puts("/C { rcurveto } def");
puts("/L { rlineto } def");
puts("/START { newpath exch A2 mul exch A2 mul moveto } bind def");
puts("/END { closepath stroke } bind def");
puts("/MM { A 0 rmoveto NE SE SW NW } bind def");
puts("/NW { 0 A neg 0 A neg A A neg C } bind def");
puts("/NE { A 0 A 0 A A C } bind def");
puts("/SE { 0 A 0 A A neg A C } bind def");
puts("/SW { A neg 0 A neg 0 A neg A neg C } bind def");
puts("/N1 { 0 A2 neg L } bind def");
puts("/E1 { A2 0 L } bind def");
puts("/S1 { 0 A2 L } bind def");
puts("/W1 { A2 neg 0 L } bind def");
puts("/N2 { 0 A neg L } bind def");
puts("/E2 { A 0 L } bind def");
puts("/S2 { 0 A L } bind def");
puts("/W2 { A neg 0 L } bind def");
puts("57 180 translate");
/* walk segments */
for (i = 0; i < nseg; i++) {
struct seg *s = seg + i;
if (s->type == None) continue;
int x0 = s->x + dx[stype[s->type].start];
int y0 = s->y + dy[stype[s->type].start];
int j = i;
x = s->x + dx[stype[s->type].end];
y = s->y + dy[stype[s->type].end];
printf("%d %d START", x0, y0);
for (;;) {
printf(" %s", stype[s->type].path);
s->type = None;
if (x == x0 && y == y0) break;
if (pt[y][x].seg1 == j) {
j = pt[y][x].seg2;
} else {
j = pt[y][x].seg1;
}
s = seg + j;
x = s->x + dx[stype[s->type].end];
y = s->y + dy[stype[s->type].end];
}
puts(" END");
}
puts("showpage");
return 0;
}
中有一些东西必须促成不确定性。不是吗?遍历所有边缘然后你会知道...
[您可能必须使用数组进行a-->b
计算]