Java-优化根查找算法

时间:2015-10-30 00:13:28

标签: java optimization mathematical-optimization numerical-analysis

我编写了以下Java代码来查找zeroesRiemann-Siegel Z(t) function。我想知道我是否可以优化代码,以便它不需要36小时来评估0< t< 1000000(虽然可能无法实现)。

通过下面代码示例中的findRoots()方法,我可以调整

    double i = 0;
    while (i < 1000000) {
        i+= 0.001;
        if(sign(func.value(i)) != sign(func.value(i+0.001))) {
        set.add(f.solve(1000, func, i, i+0.001));
        }
    }

更快地做点什么?由于我对zeta function的调查,我期待0.001增加我。我可以更改此部分,以便代码不需要36小时来评估0&lt; t&lt; 1000000,同时保持i = 0.001?

完整的程序粘贴在下面。我希望改变上面突出显示的部分。

注意:我使用的是LinkedHashSet,因为我希望在打印时输出零。

/**************************************************************************
**
**    Apply Riemann-Siegel Formula for Lehmer's Phenomenon
**
**************************************************************************
**    Axion004
**    09/30/2015
**************************************************************************/

import java.util.Iterator;
import java.util.LinkedHashSet;
//These two imports are from the Apache Commons Math library
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.solvers.BracketingNthOrderBrentSolver;

public class RiemannSiegel{
    public static void main(String[] args){
        SiegelMain();
    }

    // Main method
    public static void SiegelMain() {
        System.out.println("RS- Zeroes inside the critical line for " +
                "Zeta(1/2 + it). The t values are referenced below.");
        System.out.println();
        findRoots();
    }

    /**
     * The sign of a calculated double value.
     * @param x - the double value.
     * @return the sign in -1,  1, or 0 format.
    */
    private static int sign(double x) {
    if (x < 0.0)
            return -1;
        else if (x > 0.0)
            return 1;
        else
            return 0;
    }

    /**
     * Finds the roots of a specified function through the
         * BracketingNthOrderBrentSolver from the Apache Commons Math library.
         * See http://commons.apache.org/proper/commons-math/apidocs/org/
         * apache/commons/math3/analysis/solvers/BracketingNthOrderBrentSolver
         * .html
     * The zeroes inside the interval of 0 < t < 10000 are printed from
         * a LinkedHashSet.
    */
    public static void findRoots() {
    BracketingNthOrderBrentSolver f = new
            BracketingNthOrderBrentSolver(1e-10, 10);
        UnivariateFunction func = new UnivariateFunction() {

        public double value(double x) {
            return RiemennZ(x, 4);
        }
    };
        LinkedHashSet<Double> set = new LinkedHashSet<>();
        // Adjust values to see different zeroes
        // Test adjusting values to understand the code
        double i = 0;
        while (i < 1000000) {
            i+= 0.001;
            if(sign(func.value(i)) != sign(func.value(i+0.001))) {
            set.add(f.solve(1000, func, i, i+0.001));
            }
        }

        for(Double s: set)
            System.out.println(s);
    }

    /**
     * Riemann-Siegel theta function using the approximation by the
         * Stirling series.
     * @param t - the value of t inside the Z(t) function.
     * @return Stirling's approximation for theta(t).
    */
    public static double theta (double t) {
        return (t/2.0 * Math.log(t/(2.0*Math.PI)) - t/2.0 - Math.PI/8.0
                + 1.0/(48.0*Math.pow(t, 1)) + 7.0/(5760*Math.pow(t, 3)));
    }

    /**
     * Computes Math.Floor of the absolute value term passed in as t.
     * @param t - the value of t inside the Z(t) function.
     * @return Math.floor of the absolute value of t.
    */
    public static double fAbs(double t) {
        return Math.floor(Math.abs(t));

    }

    /**
     * Riemann-Siegel Z(t) function implemented per the Riemenn Siegel
         * formula. See http://mathworld.wolfram.com/Riemann-SiegelFormula.html
         * for details
     * @param t - the value of t inside the Z(t) function.
         * @param r - referenced for calculating the remainder terms by the
         * Taylor series approximations.
     * @return the approximate value of Z(t) through the Riemann-Siegel
         * formula
    */
    public static double RiemennZ(double t, int r) {

        double twopi = Math.PI * 2.0;
        double val = Math.sqrt(t/twopi);
        double n = fAbs(val);
        double sum = 0.0;

        for (int i = 1; i <= n; i++) {
          sum += (Math.cos(theta(t) - t * Math.log(i))) / Math.sqrt(i);
        }
        sum = 2.0 * sum;

        double remainder;
        double frac = val - n;
        int k = 0;
        double R = 0.0;

        // Necessary to individually calculate each remainder term by using
        // Taylor Series co-efficients. These coefficients are defined below.
        while (k <= r) {
            R = R + C(k, 2.0*frac-1.0) * Math.pow(t / twopi,
                    ((double) k) * -0.5);
            k++;
        }

        remainder = Math.pow(-1, (int)n-1) * Math.pow(t / twopi, -0.25) * R;
        return sum + remainder;
    }

    /**
     * C terms for the Riemann-Siegel formula. See
         * https://web.viu.ca/pughg/thesis.d/masters.thesis.pdf for details.
         * Calculates the Taylor Series coefficients for C0, C1, C2, C3,
         * and C4.
     * @param n - the number of coefficient terms to use.
         * @param z - referenced per the Taylor series calculations.
     * @return the Taylor series approximation of the remainder terms.
    */
    public static double C (int n, double z) {
        if (n==0)
            return(.38268343236508977173 * Math.pow(z, 0.0)
            +.43724046807752044936 * Math.pow(z, 2.0)
            +.13237657548034352332 * Math.pow(z, 4.0)
            -.01360502604767418865 * Math.pow(z, 6.0)
            -.01356762197010358089 * Math.pow(z, 8.0)
            -.00162372532314446528 * Math.pow(z,10.0)
            +.00029705353733379691 * Math.pow(z,12.0)
            +.00007943300879521470 * Math.pow(z,14.0)
            +.00000046556124614505 * Math.pow(z,16.0)
            -.00000143272516309551 * Math.pow(z,18.0)
            -.00000010354847112313 * Math.pow(z,20.0)
            +.00000001235792708386 * Math.pow(z,22.0)
            +.00000000178810838580 * Math.pow(z,24.0)
            -.00000000003391414390 * Math.pow(z,26.0)
            -.00000000001632663390 * Math.pow(z,28.0)
            -.00000000000037851093 * Math.pow(z,30.0)
            +.00000000000009327423 * Math.pow(z,32.0)
            +.00000000000000522184 * Math.pow(z,34.0)
            -.00000000000000033507 * Math.pow(z,36.0)
            -.00000000000000003412 * Math.pow(z,38.0)
            +.00000000000000000058 * Math.pow(z,40.0)
            +.00000000000000000015 * Math.pow(z,42.0));
        else if (n==1)
            return(-.02682510262837534703 * Math.pow(z, 1.0)
            +.01378477342635185305 * Math.pow(z, 3.0)
            +.03849125048223508223 * Math.pow(z, 5.0)
            +.00987106629906207647 * Math.pow(z, 7.0)
            -.00331075976085840433 * Math.pow(z, 9.0)
            -.00146478085779541508 * Math.pow(z,11.0)
            -.00001320794062487696 * Math.pow(z,13.0)
            +.00005922748701847141 * Math.pow(z,15.0)
            +.00000598024258537345 * Math.pow(z,17.0)
            -.00000096413224561698 * Math.pow(z,19.0)
            -.00000018334733722714 * Math.pow(z,21.0)
            +.00000000446708756272 * Math.pow(z,23.0)
            +.00000000270963508218 * Math.pow(z,25.0)
            +.00000000007785288654 * Math.pow(z,27.0)
            -.00000000002343762601 * Math.pow(z,29.0)
            -.00000000000158301728 * Math.pow(z,31.0)
            +.00000000000012119942 * Math.pow(z,33.0)
            +.00000000000001458378 * Math.pow(z,35.0)
            -.00000000000000028786 * Math.pow(z,37.0)
            -.00000000000000008663 * Math.pow(z,39.0)
            -.00000000000000000084 * Math.pow(z,41.0)
            +.00000000000000000036 * Math.pow(z,43.0)
            +.00000000000000000001 * Math.pow(z,45.0));
      else if (n==2)
            return(+.00518854283029316849 * Math.pow(z, 0.0)
            +.00030946583880634746 * Math.pow(z, 2.0)
            -.01133594107822937338 * Math.pow(z, 4.0)
            +.00223304574195814477 * Math.pow(z, 6.0)
            +.00519663740886233021 * Math.pow(z, 8.0)
            +.00034399144076208337 * Math.pow(z,10.0)
            -.00059106484274705828 * Math.pow(z,12.0)
            -.00010229972547935857 * Math.pow(z,14.0)
            +.00002088839221699276 * Math.pow(z,16.0)
            +.00000592766549309654 * Math.pow(z,18.0)
            -.00000016423838362436 * Math.pow(z,20.0)
            -.00000015161199700941 * Math.pow(z,22.0)
            -.00000000590780369821 * Math.pow(z,24.0)
            +.00000000209115148595 * Math.pow(z,26.0)
            +.00000000017815649583 * Math.pow(z,28.0)
            -.00000000001616407246 * Math.pow(z,30.0)
            -.00000000000238069625 * Math.pow(z,32.0)
            +.00000000000005398265 * Math.pow(z,34.0)
            +.00000000000001975014 * Math.pow(z,36.0)
            +.00000000000000023333 * Math.pow(z,38.0)
            -.00000000000000011188 * Math.pow(z,40.0)
            -.00000000000000000416 * Math.pow(z,42.0)
            +.00000000000000000044 * Math.pow(z,44.0)
            +.00000000000000000003 * Math.pow(z,46.0));
      else if (n==3)
            return(-.00133971609071945690 * Math.pow(z, 1.0)
            +.00374421513637939370 * Math.pow(z, 3.0)
            -.00133031789193214681 * Math.pow(z, 5.0)
            -.00226546607654717871 * Math.pow(z, 7.0)
            +.00095484999985067304 * Math.pow(z, 9.0)
            +.00060100384589636039 * Math.pow(z,11.0)
            -.00010128858286776622 * Math.pow(z,13.0)
            -.00006865733449299826 * Math.pow(z,15.0)
            +.00000059853667915386 * Math.pow(z,17.0)
            +.00000333165985123995 * Math.pow(z,19.0)
            +.00000021919289102435 * Math.pow(z,21.0)
            -.00000007890884245681 * Math.pow(z,23.0)
            -.00000000941468508130 * Math.pow(z,25.0)
            +.00000000095701162109 * Math.pow(z,27.0)
            +.00000000018763137453 * Math.pow(z,29.0)
            -.00000000000443783768 * Math.pow(z,31.0)
            -.00000000000224267385 * Math.pow(z,33.0)
            -.00000000000003627687 * Math.pow(z,35.0)
            +.00000000000001763981 * Math.pow(z,37.0)
            +.00000000000000079608 * Math.pow(z,39.0)
            -.00000000000000009420 * Math.pow(z,41.0)
            -.00000000000000000713 * Math.pow(z,43.0)
            +.00000000000000000033 * Math.pow(z,45.0)
            +.00000000000000000004 * Math.pow(z,47.0));
      else
            return(+.00046483389361763382 * Math.pow(z, 0.0)
            -.00100566073653404708 * Math.pow(z, 2.0)
            +.00024044856573725793 * Math.pow(z, 4.0)
            +.00102830861497023219 * Math.pow(z, 6.0)
            -.00076578610717556442 * Math.pow(z, 8.0)
            -.00020365286803084818 * Math.pow(z,10.0)
            +.00023212290491068728 * Math.pow(z,12.0)
            +.00003260214424386520 * Math.pow(z,14.0)
            -.00002557906251794953 * Math.pow(z,16.0)
            -.00000410746443891574 * Math.pow(z,18.0)
            +.00000117811136403713 * Math.pow(z,20.0)
            +.00000024456561422485 * Math.pow(z,22.0)
            -.00000002391582476734 * Math.pow(z,24.0)
            -.00000000750521420704 * Math.pow(z,26.0)
            +.00000000013312279416 * Math.pow(z,28.0)
            +.00000000013440626754 * Math.pow(z,30.0)
            +.00000000000351377004 * Math.pow(z,32.0)
            -.00000000000151915445 * Math.pow(z,34.0)
            -.00000000000008915418 * Math.pow(z,36.0)
            +.00000000000001119589 * Math.pow(z,38.0)
            +.00000000000000105160 * Math.pow(z,40.0)
            -.00000000000000005179 * Math.pow(z,42.0)
            -.00000000000000000807 * Math.pow(z,44.0)
            +.00000000000000000011 * Math.pow(z,46.0)
            +.00000000000000000004 * Math.pow(z,48.0));
    }    
}

0 个答案:

没有答案