我试图将负指数拟合到R中的某些数据,但拟合线与数据相比看起来太高,而我使用Excel内置功率拟合的拟合看起来更可信。有人可以告诉我为什么吗?我已尝试使用nls()
函数和optim()
并从这两种方法中获取类似参数,但两者的拟合看起来都很高。
x <- c(5.96, 12.86, 8.40, 2.03, 12.84, 21.44, 21.45, 19.97, 8.92, 25.00, 19.90, 20.00, 20.70, 16.68, 14.90, 26.00, 22.00, 22.00, 10.00, 5.70, 5.40, 3.20, 7.60, 0.59, 0.14, 0.85, 9.20, 0.79, 1.40, 2.68, 1.91)
y <- c(5.35, 2.38, 1.77, 1.87, 1.47, 3.27, 2.01, 0.52, 2.72, 0.85, 1.60, 1.37, 1.48, 0.39, 2.39, 1.83, 0.71, 1.24, 3.14, 2.16, 2.22, 11.50, 8.32, 38.98, 16.78, 32.66, 3.89, 1.89, 8.71, 9.74, 23.14)
xy.frame <- data.frame(x,y)
nl.fit <- nls(formula=(y ~ a * x^b), data=xy.frame, start = c(a=10, b=-0.7))
a.est <- coef(nl.fit)[1]
b.est <- coef(nl.fit)[2]
plot(x=xy.frame$x,y=xy.frame$y)
# curve looks too high
curve(a.est * x^b.est , add=T)
# these parameters from Excel seem to fit better
curve(10.495 * x^-0.655, add=T)
# alternatively use optim()
theta.init <- c(1000,-0.5, 50)
exp.nll <- function(theta, data){
a <- theta[1]
b <- theta[2]
sigma <- theta[3]
obs.y <- data$y
x <- data$x
pred.y <- a*x^b
nll <- -sum(dnorm(x=obs.y, mean=pred.y , sd=sigma, log=T))
nll
}
fit.optim <- optim(par=theta.init,fn=exp.nll,method="BFGS",data=xy.frame )
plot(x=xy.frame$x,y=xy.frame$y)
# still looks too high
curve(a.est * x^b.est, add=T)
答案 0 :(得分:10)
您看到意外行为的原因是看起来太高的曲线&#34;实际上,与excel的曲线相比,误差平方误差要小得多:
# Fit from nls
sum((y - a.est*x^b.est)^2)
# [1] 1588.313
# Fit from excel
sum((y - 10.495*x^ -0.655)^2)
# [1] 1981.561
nls支持更高曲线的原因是它正在努力避免在小x值下出现巨大误差,代价是大x值的误差略大。解决此问题的一种方法可能是应用日志日志转换:
mod <- lm(log(y)~log(x))
(a.est2 <- exp(coef(mod)["(Intercept)"]))
# (Intercept)
# 10.45614
(b.est2 <- coef(mod)["log(x)"])
# log(x)
# -0.6529741
这些与excel的系数非常接近,并且产生更具视觉吸引力的拟合(尽管平方误差误差度量表的性能更差):