使用Bradley-Roth图像阈值处理方法,我有以下代码进行图像阈值处理。
from PIL import Image
import copy
import time
def bradley_threshold(image, threshold=75, windowsize=5):
ws = windowsize
image2 = copy.copy(image).convert('L')
w, h = image.size
l = image.convert('L').load()
l2 = image2.load()
threshold /= 100.0
for y in xrange(h):
for x in xrange(w):
#find neighboring pixels
neighbors =[(x+x2,y+y2) for x2 in xrange(-ws,ws) for y2 in xrange(-ws, ws) if x+x2>0 and x+x2<w and y+y2>0 and y+y2<h]
#mean of all neighboring pixels
mean = sum([l[a,b] for a,b in neighbors])/len(neighbors)
if l[x, y] < threshold*mean:
l2[x,y] = 0
else:
l2[x,y] = 255
return image2
i = Image.open('test.jpg')
windowsize = 5
bradley_threshold(i, 75, windowsize).show()
当windowsize
较小且图像较小时,此方法正常。我一直在用这个图像进行测试:
当使用5的窗口大小时,我遇到大约5或6秒的处理时间,但是如果我将窗口大小提高到20并且算法在每个方向上检查20个像素的平均值,我得到该图像的时间超过一分钟。
如果我使用尺寸为2592x1936且窗口大小仅为5的图像,则需要将近10分钟才能完成。
那么,我怎样才能改善这些时间? numpy数组会更快吗? im.getpixel比将图像加载到像素访问模式更快吗?还有其他提速提示吗?提前致谢。
答案 0 :(得分:5)
参考我们的评论,我在这里编写了这个算法的MATLAB实现:Extract a page from a uniform background in an image,它在大图像上非常快。
如果您想更好地解释算法,请在此处查看我的其他答案:Bradley Adaptive Thresholding -- Confused (questions)。如果您想要更好地理解我编写的代码,这可能是一个很好的起点。
因为MATLAB和NumPy是相似的,所以这是Bradley-Roth阈值算法的重新实现,但是在NumPy中。我将PIL图像转换为NumPy数组,对此图像进行处理,然后转换回PIL图像。该函数包含三个参数:灰度图像image
,窗口大小s
和阈值t
。这个阈值与你所拥有的不同,因为这完全符合本文的要求。阈值t
是每个像素窗口的总求和面积的百分比。如果求和面积小于该阈值,则输出应为黑色像素 - 否则它是白色像素。 s
和t
的默认值是列数除以8和舍入,分别为15%:
import numpy as np
from PIL import Image
def bradley_roth_numpy(image, s=None, t=None):
# Convert image to numpy array
img = np.array(image).astype(np.float)
# Default window size is round(cols/8)
if s is None:
s = np.round(img.shape[1]/8)
# Default threshold is 15% of the total
# area in the window
if t is None:
t = 15.0
# Compute integral image
intImage = np.cumsum(np.cumsum(img, axis=1), axis=0)
# Define grid of points
(rows,cols) = img.shape[:2]
(X,Y) = np.meshgrid(np.arange(cols), np.arange(rows))
# Make into 1D grid of coordinates for easier access
X = X.ravel()
Y = Y.ravel()
# Ensure s is even so that we are able to index into the image
# properly
s = s + np.mod(s,2)
# Access the four corners of each neighbourhood
x1 = X - s/2
x2 = X + s/2
y1 = Y - s/2
y2 = Y + s/2
# Ensure no coordinates are out of bounds
x1[x1 < 0] = 0
x2[x2 >= cols] = cols-1
y1[y1 < 0] = 0
y2[y2 >= rows] = rows-1
# Ensures coordinates are integer
x1 = x1.astype(np.int)
x2 = x2.astype(np.int)
y1 = y1.astype(np.int)
y2 = y2.astype(np.int)
# Count how many pixels are in each neighbourhood
count = (x2 - x1) * (y2 - y1)
# Compute the row and column coordinates to access
# each corner of the neighbourhood for the integral image
f1_x = x2
f1_y = y2
f2_x = x2
f2_y = y1 - 1
f2_y[f2_y < 0] = 0
f3_x = x1-1
f3_x[f3_x < 0] = 0
f3_y = y2
f4_x = f3_x
f4_y = f2_y
# Compute areas of each window
sums = intImage[f1_y, f1_x] - intImage[f2_y, f2_x] - intImage[f3_y, f3_x] + intImage[f4_y, f4_x]
# Compute thresholded image and reshape into a 2D grid
out = np.ones(rows*cols, dtype=np.bool)
out[img.ravel()*count <= sums*(100.0 - t)/100.0] = False
# Also convert back to uint8
out = 255*np.reshape(out, (rows, cols)).astype(np.uint8)
# Return PIL image back to user
return Image.fromarray(out)
if __name__ == '__main__':
img = Image.open('test.jpg').convert('L')
out = bradley_roth_numpy(img)
out.show()
out.save('output.jpg')
如果需要,将读入图像并将其转换为灰度。将显示输出图像,并将其保存到您将脚本运行到名为output.jpg
的图像的同一目录中。如果要覆盖设置,只需执行以下操作:
out = bradley_roth_numpy(img, windowsize, threshold)
玩这个以获得好结果。使用默认参数并使用IPython,我使用timeit
测量了平均执行时间,这是我在您的帖子中上传的图片所得到的:
In [16]: %timeit bradley_roth_numpy(img)
100 loops, best of 3: 7.68 ms per loop
这意味着在您上传的图像上重复运行此功能100次,每次运行平均最多3次执行时间为7.68毫秒。
当我对其进行阈值处理时,我也会得到这个图像:
答案 1 :(得分:4)
使用%prun
对IPython中的代码进行分析显示:
ncalls tottime percall cumtime percall filename:lineno(function)
50246 2.009 0.000 2.009 0.000 <ipython-input-78-b628a43d294b>:15(<listcomp>)
50246 0.587 0.000 0.587 0.000 <ipython-input-78-b628a43d294b>:17(<listcomp>)
1 0.170 0.170 2.829 2.829 <ipython-input-78-b628a43d294b>:5(bradley_threshold)
50246 0.058 0.000 0.058 0.000 {built-in method sum}
50257 0.004 0.000 0.004 0.000 {built-in method len}
,即几乎所有的运行时间都是由于Python循环(慢)和非矢量化算术(慢)。如果你使用numpy数组重写,我希望有很大的改进;或者你可以使用cython,如果你能解决如何对代码进行矢量化的问题。
答案 2 :(得分:3)
好的,我在这里有点晚了。无论如何,让我分享一下我的想法:
你可以通过使用动态编程来计算手段来加快速度,但是让scipy和numpy完成所有肮脏的工作会更加容易和快捷。 (请注意,我将Python3用于我的代码,因此xrange会在代码中更改为范围)。
#!/usr/bin/env python3
import numpy as np
from scipy import ndimage
from PIL import Image
import copy
import time
def faster_bradley_threshold(image, threshold=75, window_r=5):
percentage = threshold / 100.
window_diam = 2*window_r + 1
# convert image to numpy array of grayscale values
img = np.array(image.convert('L')).astype(np.float) # float for mean precision
# matrix of local means with scipy
means = ndimage.uniform_filter(img, window_diam)
# result: 0 for entry less than percentage*mean, 255 otherwise
height, width = img.shape[:2]
result = np.zeros((height,width), np.uint8) # initially all 0
result[img >= percentage * means] = 255 # numpy magic :)
# convert back to PIL image
return Image.fromarray(result)
def bradley_threshold(image, threshold=75, windowsize=5):
ws = windowsize
image2 = copy.copy(image).convert('L')
w, h = image.size
l = image.convert('L').load()
l2 = image2.load()
threshold /= 100.0
for y in range(h):
for x in range(w):
#find neighboring pixels
neighbors =[(x+x2,y+y2) for x2 in range(-ws,ws) for y2 in range(-ws, ws) if x+x2>0 and x+x2<w and y+y2>0 and y+y2<h]
#mean of all neighboring pixels
mean = sum([l[a,b] for a,b in neighbors])/len(neighbors)
if l[x, y] < threshold*mean:
l2[x,y] = 0
else:
l2[x,y] = 255
return image2
if __name__ == '__main__':
img = Image.open('test.jpg')
t0 = time.process_time()
threshed0 = bradley_threshold(img)
print('original approach:', round(time.process_time()-t0, 3), 's')
threshed0.show()
t0 = time.process_time()
threshed1 = faster_bradley_threshold(img)
print('w/ numpy & scipy :', round(time.process_time()-t0, 3), 's')
threshed1.show()
这使我的机器上的速度更快:
$ python3 bradley.py
original approach: 3.736 s
w/ numpy & scipy : 0.003 s
PS:请注意,我在scipy中使用的平均值在边界处的行为略微不同于代码中的平均值(对于平均计算窗口不再完全包含在图像中的位置)。但是,我认为这不应该是一个问题。
另一个小的区别是来自for循环的窗口并不完全以像素为中心,因为偏移xrange(-ws,ws),ws = 5得到-5,-4 - ,...,3 ,4,结果平均为-0.5。这可能不是故意的。