将以下表达式转换为sum-sum(POS)形式: 一个。 AB + CD(AB̅+ CD) 湾AB(B̅C̅+ BD)
我试图了解你如何应用布尔代数规则并将它们转换为sum-sum形式。
答案 0 :(得分:0)
假设⋅运算符代表二元连词,+二元分离和〜或一元否定,你可以用这种方式应用Boolean algebra的定律:
a·b + c·d·(a·¬b + c·d)
a·b + c·d·a·¬b + c·d·c·d //distributivity: c·d·(a·¬b + c·d) = c·d·a·¬b + c·d·c·d
a·b + c·d·a·¬b + c·d //idempotence of ·: c·d·c·d = c·d
a·b + c·d·(a·¬b + 1) //distributivity: c·d·a·¬b + c·d = c·d·(a·¬b + 1)
a·b + c·d·1 //annihilator for +: (a·¬b + 1) = 1
a·b + c·d //identity for ·: c·d·1 = c·d; also minimal DNF
(a·b) + (c·d)
(a+c)·(a+d)·(b+c)·(b+d) //distributivity of + over ·
(a+c)·(a+d)·(b+c)·(b+d) //minimal CNF
第二个表达式可以简化为它的POS形式:
a·b·(¬b·¬c + b·d)
a·b·¬b·¬c + a·b·b·d) //distributivity of · over +
a·(b·¬b)·¬c + a·b·d //idempotence of ·: a·b·b·d = a·b·d
a·(0)·¬c + a·b·d //complementation: b·¬b = 0
0 + a·b·d //annihilator for ·: a·(0)·¬c = 0
a·b·d //identity for +: 0 + a·b·d = a·b·d
a·b·d //both minimal DNF and minimal CNF