我需要从蓝色圈子转到红色圈子。路径必须包含黑色圈,(即使也可能不是最佳选择)。
我已经包含了从节点到节点的距离。并通过使用'dijkstra_path'我得到:
这是正确的。
但是......我该怎样做才能确保包含'kountoumas',甚至包含其他节点列表。
然后运行算法或另一个算法。
谢谢
答案 0 :(得分:1)
计算从蓝色圆圈到黑色圆圈的距离。然后,计算从黑色圆圈到红色圆圈的距离。然后,打印所有内容,就好像它是一条路径一样。这样做的好处是甚至可以用于"中介"圆。
如果他们有特定的订单,就会有效(正如你在评论中所说的那样)!
答案 1 :(得分:1)
根据我对您上次评论的理解,您希望列出通过中间节点的所有可能路径,以便能够选择最短的路径。因此,对于图中的图形,这里是用于列出从1到2的所有可能路径的代码,分别作为第一个和最后一个节点,具有中间节点3和4.我添加了一些注释以尽量使其尽可能清楚。
$ yes | zsh -c 'read -sk 1 "RESPONSE?[Y/n] " ; echo $RESPONSE'
[Y/n]
结果如下:
start = 1 # starting node for the path (fixed)
end = 2 # last node in the path (fixed)
intermediate = [4,3] # Intermediate nodes that the path must include
#permutations of intermediate nodes to find shortest path
p = list(it.permutations(intermediate))
print "Possible orders of intermediate nodes", p, '\n'
hops_tmp = 0
path_tmp = [] # stores path for each permutation
sub_path_tmp = [] # stores sub path from one node to another
for j in xrange(len(p)): # loop for all permutations possibilities
# path from starting node to the first intermediate node
sub_path_tmp = nx.dijkstra_path(G,start,p[j][0])
for k in xrange(len(sub_path_tmp)): # update path with sub_path
path_tmp.append(sub_path_tmp[k])
#loop to find path from intermediate to another upto the last node
for i in xrange(len(intermediate)):
# if last intermediate node calculate path to last node
if i == len(intermediate) - 1:
sub_path_tmp = nx.dijkstra_path(G,p[j][i],end)
else: # otherwise calculate path to the next intermediate node
sub_path_tmp = nx.dijkstra_path(G,p[j][i],p[j][i+1])
for k in xrange(len(sub_path_tmp)-1): # update path with sub_path
path_tmp.append(sub_path_tmp[k+1])
hops_tmp = len(path_tmp) -1
print path_tmp
print hops_tmp , '\n'
# Reset path and hops for the next permutation
hops_tmp = 0
path_tmp = []
P.S 1-如果您愿意,可以添加其他中间节点,它应该可以正常工作
2-提取最短路径应该很容易,但我没有把它包括在内,只关注问题的核心