我读了RWH失败了;而不是一个退出,我命令 Haskell:功能编程工艺。现在我对第146页的这些功能证明感到好奇。特别是我试图证明8.5.1 sum (reverse xs) = sum xs
。我可以做一些感应证明,但后来我卡住了..
sum ( reverse xs ) = sum xs
sum ( reverse [] ) = sum []
Left = sum ( [] ) (reverse.1)
= 0 (sum.1)
Right = 0 (sum.1)
sum ( reverse (x:xs) ) = sum (x:xs)
Left = sum ( reverse xs ++ [x] ) (reverse.2)
Right = sum (x:xs)
= x + sum xs (sum.2)
所以现在我只是试图证明Left
sum ( reverse xs ++ [x] )
等于Right
x + sum xs
,但这离我开始的地方并不太远{ {1}}。
我不太确定为什么需要证明这一点,使用sum ( reverse (x:xs) ) = sum (x:xs)
(通过defn)的符号证明似乎是完全合理的,因为+是可交换的(关节)然后是reverse x:y:z = z:y:x
,
答案 0 :(得分:24)
sum (reverse []) = sum [] -- def reverse
sum (reverse (x:xs)) = sum (reverse xs ++ [x]) -- def reverse
= sum (reverse xs) + sum [x] -- sum lemma below
= sum (reverse xs) + x -- def sum
= x + sum (reverse xs) -- commutativity assumption!
= x + sum xs -- inductive hypothesis
= sum (x:xs) -- definition of sum
然而,关联性和可交换性的基本假设并非严格保证,对于许多数字类型(例如Float
和Double
,这些假设都会被违反。< / p>
引理:sum (xs ++ ys) == sum xs + sum ys
给出了(+)
证明:
sum ([] ++ ys) = sum ys -- def (++)
= 0 + sum ys -- identity of addition
= sum [] ++ sum ys -- def sum
sum ((x:xs) ++ ys) = sum (x : (xs ++ ys)) -- def (++)
= x + sum (xs ++ ys) -- def sum
= x + (sum xs + sum ys) -- inductive hypothesis
= (x + sum xs) + sum ys -- associativity assumption!
= sum (x:xs) + sum ys -- def sum
答案 1 :(得分:6)
基本上你需要显示
sum (reverse xs ++ [x]) = sum (reverse xs) + sum [x]
然后很容易导致
= x + sum (reverse xs)
= x + sum xs -- by inductive hyp.
问题是要显示sum
分配在列表连接上。
答案 2 :(得分:4)
使用和的定义分解(求和xs ++ [x])和x + sum(反向(xs)),并使用归纳假设你知道sum(reverse(xs))= sum( XS)。但我同意,对于像这样的问题,归纳是过度的。
答案 3 :(得分:3)
这就是我认为你被困住的地方。你需要证明一个引理
的引理sum (xs ++ ys) == sum xs + sum ys
为了证明这个定律你必须假设加法是关联的,这对整数和有理数都是正确的。
然后,你还需要假设加法是可交换的,对于整数和有理数,也适用于浮点数。
题外话:你的证明样式对我来说很奇怪。如果您使用Graham Hutton's book中的样式,我认为您可以更轻松地编写这些样张。