我发现OpenCV中的LDA结果与其他库不同。例如,输入数据是
DATA (13 data samples with 4 dimensions)
7 26 6 60
1 29 15 52
11 56 8 20
11 31 8 47
7 52 6 33
11 55 9 22
3 71 17 6
1 31 22 44
2 54 18 22
21 47 4 26
1 40 23 34
11 66 9 12
10 68 8 12
LABEL
0 1 2 0 1 2 0 1 2 0 1 2 0
OpenCV代码是
Mat data = (Mat_<float>(13, 4) <<\
7, 26, 6, 60,\
1, 29, 15, 52,\
11, 56, 8, 20,\
11, 31, 8, 47,\
7, 52, 6, 33,\
11, 55, 9, 22,\
3, 71, 17, 6,\
1, 31, 22, 44,\
2, 54, 18, 22,\
21, 47, 4, 26,\
1, 40, 23, 34,\
11, 66, 9, 12,\
10, 68, 8, 12);
Mat mean;
reduce(data, mean, 0, CV_REDUCE_AVG);
mean.convertTo(mean, CV_64F);
Mat label(data.rows, 1, CV_32SC1);
for (int i=0; i<label.rows; i++)
label.at<int>(i) = i%3;
LDA lda(data, label);
Mat projection = lda.subspaceProject(lda.eigenvectors(), mean, data);
matlab代码是(使用Matlab Toolbox for Dimensionality Reduction)
cd drtoolbox\techniques\
load hald
label=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0]
[projection, trainedlda] = lda(ingredients, label)
特征值是
OpenCV (lda.eigenvectors())
0.4457 4.0132
0.4880 3.5703
0.5448 3.3466
0.5162 3.5794
Matlab Toolbox for Dimensionality Reduction (trainedlda.M)
0.5613 0.7159
0.6257 0.6203
0.6898 0.5884
0.6635 0.6262
然后数据的预测是
OpenCV
1.3261 7.1276
0.8892 -4.7569
-1.8092 -6.1947
-0.0720 1.1927
0.0768 3.3105
-0.7200 0.7405
-0.3788 -4.7388
1.5490 -2.8255
-0.3166 -8.8295
-0.8259 9.8953
1.3239 -3.1406
-0.5140 4.2194
-0.5285 4.0001
Matlab Toolbox for Dimensionality Reduction
1.8030 1.3171
1.2128 -0.8311
-2.3390 -1.0790
-0.0686 0.3192
0.1583 0.5392
-0.9479 0.1414
-0.5238 -0.9722
1.9852 -0.4809
-0.4173 -1.6266
-1.1358 1.9009
1.6719 -0.5711
-0.6996 0.7034
-0.6993 0.6397
即使这些LDA具有相同的数据,特征向量和投影也是不同的。我相信有两种可能性。
谢谢!
答案 0 :(得分:1)
不同之处在于因为特征向量没有标准化。 归一化(L2范数)特征向量是
OpenCV
0.44569 0.55196
0.48798 0.49105
0.54478 0.46028
0.51618 0.49230
Matlab Toolbox for Dimensionality Reduction
0.44064 0.55977
0.49120 0.48502
0.54152 0.46008
0.52087 0.48963
它们现在看起来很简陋,虽然它们具有完全不同的特征值。
即使OpenCV中的PCA返回归一化的特征向量,LDA也不会。我的下一个问题是“LDA中的特征向量是否正常化?”