R glmer警告:模型无法收敛/模型几乎无法识别

时间:2015-08-03 09:09:28

标签: r warnings mixed-models

我在这个论坛上看到过有关此事的问题,我也曾在之前的帖子中自问过,但我仍然无法解决我的问题。因此,我再次尝试,尽可能详细地制定问题,尽可能详细地提供信息。

我的数据集具有二项式因变量,3个分类固定效果和2个分类随机效应(项目和主题)。我正在使用glmer的混合效果模型。这是我在R中输入的内容:

modelall<- glmer(moodR ~ group*context*condition + (1|subject) + ``(1|item), data=RprodHSNS, family="binomial")`

我得到2个警告:

Warning messages:
1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
  Model failed to converge with max|grad| = 0.02081 (tol = 0.001, component 11)
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
  Model is nearly unidentifiable: large eigenvalue ratio
- Rescale variables?`

我的总结如下:

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial  ( logit )
Formula: moodR ~ group * context * condition + (1 | subject) + (1 | item)
Data: RprodHSNS`


AIC      BIC   logLik deviance df.resid
1400.0   1479.8   -686.0   1372.0     2195 `

Scaled residuals: 
Min      1Q  Median      3Q     Max 
-8.0346 -0.2827 -0.0152  0.2038 20.6578 `

Random effects:
Groups  Name        Variance Std.Dev.
item    (Intercept) 1.475    1.215   
subject (Intercept) 1.900    1.378   
Number of obs: 2209, groups:  item, 54; subject, 45
Fixed effects:`
Estimate Std. Error z value Pr(>|z|)`                             
(Intercept)                -0.61448   42.93639  -0.014 0.988582  
group1                     -1.29254   42.93612  -0.030 0.975984    
context1                    0.09359   42.93587   0.002 0.998261   
context2                   -0.77262    0.22894  -3.375 0.000739***
condition1                  4.99219   46.32672   0.108 0.914186
group1:context1            -0.17781   42.93585  -0.004 0.996696
group1:context2            -0.10551    0.09925  -1.063 0.287741
group1:condition1          -3.07516   46.32653  -0.066 0.947075
context1:condition1        -3.47541   46.32648  -0.075 0.940199
context2:condition1        -0.07293    0.22802  -0.320 0.749087
group1:context1:condition1  2.47882   46.32656   0.054 0.957328
group1:context2:condition1  0.30360    0.09900   3.067 0.002165 **

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
            (Intr) group1 cntxt1 cntxt2 cndtn1 grp1:cnt1 grp1:2 grp1:cnd1 cnt1:1 cnt2:1 g1:1:1
group1      -1.000                                                                            
context1    -1.000  1.000                                                                
context2     0.001  0.000 -0.001                                                              
condition1  -0.297  0.297  0.297  0.000                                                       
grp1:cntxt1  1.000 -1.000 -1.000  0.001 -0.297                                                
grp1:cntxt2  0.001  0.000  0.000 -0.123  0.000  0.000                                       
grp1:cndtn1  0.297 -0.297 -0.297 -0.001 -1.000  0.297     0.000                               
cntxt1:cnd1  0.297 -0.297 -0.297 -0.001 -1.000  0.297     0.001  1.000                        
cntxt2:cnd1  0.000  0.000 -0.001  0.011  0.001  0.000    -0.197 -0.001    -0.001              
grp1:cnt1:1 -0.297  0.297  0.297  0.001  1.000 -0.297    -0.001 -1.000    -1.000  0.001       
grp1:cnt2:1  0.000  0.000  0.001 -0.198  0.000 -0.001     0.252  0.000     0.001 -0.136  0.000

极高的p值,似乎不可能。

在上一篇文章中,我读到其中一个问题可以通过在命令中插入以下内容来增加迭代次数来修复:glmerControl(optimizer =&#34; bobyqa&#34;,optCtrl = list(maxfun = 100000))

这就是我所做的:

modelall<- glmer(moodR ~ group*context*condition + (1|subject) + (1|item), data=RprodHSNS, family="binomial", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))

现在,第二个警告消失了,但第一个警告仍在那里:

> Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
  Model failed to converge with max|grad| = 0.005384 (tol = 0.001, component 7)

摘要看起来仍然很奇怪:

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: moodR ~ group * context * condition + (1 | subject) + (1 | item)
   Data: RprodHSNS
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))`

AIC      BIC   logLik deviance df.resid 
1400.0   1479.8   -686.0   1372.0     2195

Scaled residuals: 
Min      1Q  Median      3Q     Max 
-8.0334 -0.2827 -0.0152  0.2038 20.6610 

Random effects:
Groups  Name        Variance Std.Dev.
item    (Intercept) 1.474    1.214   
subject (Intercept) 1.901    1.379   
Number of obs: 2209, groups:  item, 54; subject, 45

Fixed effects:
                        Estimate Std. Error z value Pr(>|z|)    
(Intercept)                -0.64869   26.29368  -0.025 0.980317    
group1                     -1.25835   26.29352  -0.048 0.961830    
context1                    0.12772   26.29316   0.005 0.996124    
context2                   -0.77265    0.22886  -3.376 0.000735 ***
condition1                  4.97325   22.80050   0.218 0.827335    
group1:context1            -0.21198   26.29303  -0.008 0.993567    
group1:context2            -0.10552    0.09924  -1.063 0.287681    
group1:condition1          -3.05629   22.80004  -0.134 0.893365    
context1:condition1        -3.45656   22.80017  -0.152 0.879500    
context2:condition1        -0.07305    0.22794  -0.320 0.748612    
group1:context1:condition1  2.45996   22.80001   0.108 0.914081    
group1:context2:condition1  0.30347    0.09899   3.066 0.002172 ** 

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
        (Intr) group1 cntxt1 cntxt2 cndtn1 grp1:cnt1 grp1:2 grp1:cnd1 cnt1:1 cnt2:1 g1:1:1
group1      -1.000                                                                            
context1    -1.000  1.000                                                                     
context2     0.000  0.000  0.000                                                              
condition1   0.123 -0.123 -0.123 -0.001                                                       
grp1:cntxt1  1.000 -1.000 -1.000  0.001  0.123                                                
grp1:cntxt2  0.001  0.000  0.000 -0.123  0.001  0.000                                         
grp1:cndtn1 -0.123  0.123  0.123  0.000 -1.000 -0.123    -0.001                               
cntxt1:cnd1 -0.123  0.123  0.123  0.000 -1.000 -0.123     0.000  1.000                        
cntxt2:cnd1  0.000  0.000  0.000  0.011 -0.001  0.000    -0.197  0.001     0.001              
grp1:cnt1:1  0.123 -0.123 -0.123  0.000  1.000  0.123     0.000 -1.000    -1.000 -0.001      
grp1:cnt2:1  0.000 -0.001  0.001 -0.198  0.001 -0.001     0.252 -0.001     0.000 -0.136  0.000

我能做些什么来解决这个问题?或者任何人都能告诉我这个警告甚至意味着什么? (以一种像我这样的R-newbie可以理解的方式)非常感谢任何帮助!

0 个答案:

没有答案