警告消息glmer模型未能收敛

时间:2015-07-30 17:23:49

标签: r warnings lme4

我在这个论坛上看到过这方面的问题(并且之前已经自己问过),但我还没有能够解决我的问题,所以我会再次尝试更详细的信息:

我有一个带二项式因变量的数据集,3个分类固定效应和2个分类随机效应(项目和主题)。我想使用glmer进行混合效果模型。这是我在R中输入的内容:

modelall<- glmer(moodR ~ group*context*condition + (1|subject) + ``(1|item), data=RprodHSNS, family="binomial")`

然后我收到以下警告:

Warning messages:
1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
  Model failed to converge with max|grad| = 0.02081 (tol = 0.001, component 11)
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
  Model is nearly unidentifiable: large eigenvalue ratio
- Rescale variables?`

这就是我的总结:

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial  ( logit )
Formula: moodR ~ group * context * condition + (1 | subject) + (1 | item)
Data: RprodHSNS`


AIC      BIC   logLik deviance df.resid
1400.0   1479.8   -686.0   1372.0     2195 `

Scaled residuals: 
Min      1Q  Median      3Q     Max 
-8.0346 -0.2827 -0.0152  0.2038 20.6578 `

Random effects:
Groups  Name        Variance Std.Dev.
item    (Intercept) 1.475    1.215   
subject (Intercept) 1.900    1.378   
Number of obs: 2209, groups:  item, 54; subject, 45
Fixed effects:`
Estimate Std. Error z value Pr(>|z|)`                             
(Intercept)                -0.61448   42.93639  -0.014 0.988582  
group1                     -1.29254   42.93612  -0.030 0.975984    
context1                    0.09359   42.93587   0.002 0.998261   
context2                   -0.77262    0.22894  -3.375 0.000739***
condition1                  4.99219   46.32672   0.108 0.914186
group1:context1            -0.17781   42.93585  -0.004 0.996696
group1:context2            -0.10551    0.09925  -1.063 0.287741
group1:condition1          -3.07516   46.32653  -0.066 0.947075
context1:condition1        -3.47541   46.32648  -0.075 0.940199
context2:condition1        -0.07293    0.22802  -0.320 0.749087
group1:context1:condition1  2.47882   46.32656   0.054 0.957328
group1:context2:condition1  0.30360    0.09900   3.067 0.002165 **

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
            (Intr) group1 cntxt1 cntxt2 cndtn1 grp1:cnt1 grp1:2 grp1:cnd1 cnt1:1 cnt2:1 g1:1:1
group1      -1.000                                                                            
context1    -1.000  1.000                                                                
context2     0.001  0.000 -0.001                                                              
condition1  -0.297  0.297  0.297  0.000                                                       
grp1:cntxt1  1.000 -1.000 -1.000  0.001 -0.297                                                
grp1:cntxt2  0.001  0.000  0.000 -0.123  0.000  0.000                                       
grp1:cndtn1  0.297 -0.297 -0.297 -0.001 -1.000  0.297     0.000                               
cntxt1:cnd1  0.297 -0.297 -0.297 -0.001 -1.000  0.297     0.001  1.000                        
cntxt2:cnd1  0.000  0.000 -0.001  0.011  0.001  0.000    -0.197 -0.001    -0.001              
grp1:cnt1:1 -0.297  0.297  0.297  0.001  1.000 -0.297    -0.001 -1.000    -1.000  0.001       
grp1:cnt2:1  0.000  0.000  0.001 -0.198  0.000 -0.001     0.252  0.000     0.001 -0.136  0.000

极高的p值,似乎不可能。

在上一篇文章中,我读到可以通过在命令中插入此位来增加迭代次数来解决其中一个问题:glmerControl(optimizer =&#34; bobyqa&#34;,optCtrl = list(maxfun = 100000))

所以这是新命令:

modelall<- glmer(moodR ~ group*context*condition + (1|subject) + (1|item), data=RprodHSNS, family="binomial", glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))

我少了一个警告,但另一个仍在那里:

> Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
  Model failed to converge with max|grad| = 0.005384 (tol = 0.001, component 7)

摘要仍然看起来很奇怪:

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: moodR ~ group * context * condition + (1 | subject) + (1 | item)
   Data: RprodHSNS
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))`

AIC      BIC   logLik deviance df.resid 
1400.0   1479.8   -686.0   1372.0     2195

Scaled residuals: 
Min      1Q  Median      3Q     Max 
-8.0334 -0.2827 -0.0152  0.2038 20.6610 

Random effects:
Groups  Name        Variance Std.Dev.
item    (Intercept) 1.474    1.214   
subject (Intercept) 1.901    1.379   
Number of obs: 2209, groups:  item, 54; subject, 45

Fixed effects:
                        Estimate Std. Error z value Pr(>|z|)    
(Intercept)                -0.64869   26.29368  -0.025 0.980317    
group1                     -1.25835   26.29352  -0.048 0.961830    
context1                    0.12772   26.29316   0.005 0.996124    
context2                   -0.77265    0.22886  -3.376 0.000735 ***
condition1                  4.97325   22.80050   0.218 0.827335    
group1:context1            -0.21198   26.29303  -0.008 0.993567    
group1:context2            -0.10552    0.09924  -1.063 0.287681    
group1:condition1          -3.05629   22.80004  -0.134 0.893365    
context1:condition1        -3.45656   22.80017  -0.152 0.879500    
context2:condition1        -0.07305    0.22794  -0.320 0.748612    
group1:context1:condition1  2.45996   22.80001   0.108 0.914081    
group1:context2:condition1  0.30347    0.09899   3.066 0.002172 ** 

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
        (Intr) group1 cntxt1 cntxt2 cndtn1 grp1:cnt1 grp1:2 grp1:cnd1 cnt1:1 cnt2:1 g1:1:1
group1      -1.000                                                                            
context1    -1.000  1.000                                                                     
context2     0.000  0.000  0.000                                                              
condition1   0.123 -0.123 -0.123 -0.001                                                       
grp1:cntxt1  1.000 -1.000 -1.000  0.001  0.123                                                
grp1:cntxt2  0.001  0.000  0.000 -0.123  0.001  0.000                                         
grp1:cndtn1 -0.123  0.123  0.123  0.000 -1.000 -0.123    -0.001                               
cntxt1:cnd1 -0.123  0.123  0.123  0.000 -1.000 -0.123     0.000  1.000                        
cntxt2:cnd1  0.000  0.000  0.000  0.011 -0.001  0.000    -0.197  0.001     0.001              
grp1:cnt1:1  0.123 -0.123 -0.123  0.000  1.000  0.123     0.000 -1.000    -1.000 -0.001      
grp1:cnt2:1  0.000 -0.001  0.001 -0.198  0.001 -0.001     0.252 -0.001     0.000 -0.136  0.000
  

有谁知道我能做些什么来解决这个问题?或者告诉我这个警告甚至意味着什么?请以某种方式解释像我这样的R新手能够理解!

非常感谢任何帮助!

0 个答案:

没有答案