我是R的新手,我使用glmer来拟合几个二项式模型,我只需要它们来调用predict
来使用结果概率。但是,我有一个非常大的数据集,即使只有一个模型的大小也变得非常大:
> library(pryr)
> object_size(mod)
701 MB
模型系数的大小相形见绌:
> object_size(coef(mod))
1.16 MB
拟合值的大小也是如此:
> object_size(fitted(mod))
25.6 MB
首先,我不明白为什么模型的对象大小如此之大。它似乎包含用于适合模型的原始数据框架,但即使这样也不能解释尺寸。为什么这么大?
其次,是否可以将模型剥离为仅调用预测所需的部分?如果是这样,我该怎么做呢?我在http://blog.yhathq.com/posts/reducing-your-r-memory-footprint-by-7000x.html找到了glm
的帖子,但似乎glmer模型的访问方式不同,组件也不同。
非常感谢任何帮助。
编辑:
深入了解模型的内部结构:
> object_size(getME(mod, "X"))
205 MB
> object_size(getME(mod, "Z"))
36.9 MB
> object_size(getME(mod, "Zt"))
38.4 MB
> object_size(getME(mod, "Ztlist"))
41.6 MB
> object_size(getME(mod, "mmList"))
38.4 MB
> object_size(getME(mod, "y"))
3.2 MB
> object_size(getME(mod, "mu"))
3.2 MB
> object_size(getME(mod, "u"))
18.4 kB
> object_size(getME(mod, "b"))
19.5 kB
> object_size(getME(mod, "Gp"))
56 B
> object_size(getME(mod, "Tp"))
472 B
> object_size(getME(mod, "L"))
15.5 MB
> object_size(getME(mod, "Lambda"))
38.1 kB
> object_size(getME(mod, "Lambdat"))
38.1 kB
> object_size(getME(mod, "Lind"))
9.22 kB
> object_size(getME(mod, "Tlist"))
936 B
> object_size(getME(mod, "A"))
38.4 MB
> object_size(getME(mod, "RX"))
30.3 kB
> object_size(getME(mod, "RZX"))
1.05 MB
> object_size(getME(mod, "sigma"))
48 B
> object_size(getME(mod, "flist"))
4.89 MB
> object_size(getME(mod, "fixef"))
4.5 kB
> object_size(getME(mod, "beta"))
496 B
> object_size(getME(mod, "theta"))
472 B
> object_size(getME(mod, "ST"))
936 B
> object_size(getME(mod, "REML"))
48 B
> object_size(getME(mod, "is_REML"))
48 B
> object_size(getME(mod, "n_rtrms"))
48 B
> object_size(getME(mod, "n_rfacs"))
48 B
> object_size(getME(mod, "N"))
256 B
> object_size(getME(mod, "n"))
256 B
> object_size(getME(mod, "p"))
256 B
> object_size(getME(mod, "q"))
256 B
> object_size(getME(mod, "p_i"))
408 B
> object_size(getME(mod, "l_i"))
408 B
> object_size(getME(mod, "q_i"))
408 B
> object_size(getME(mod, "mod"))
48 B
> object_size(getME(mod, "m_i"))
424 B
> object_size(getME(mod, "m"))
48 B
> object_size(getME(mod, "cnms"))
624 B
> object_size(getME(mod, "devcomp"))
2.21 kB
> object_size(getME(mod, "offset"))
3.2 MB
> get_obj_size(mod@resp, "RC")
[,1]
family 673355488
initialize 673355488
initialize#lmResp 673355488
ptr 673355488
resDev 673355488
updateMu 673355488
updateWts 673355488
wrss 673355488
eta 3196024
mu 3196024
n 3196024
offset 3196024
sqrtrwt 3196024
sqrtXwt 3196024
weights 3196024
wtres 3196024
y 3196024
Ptr 40
> get_obj_size(mod@pp, "RC")
[,1]
beta 449419408
initialize 449419408
initializePtr 449419408
ldL2 449419408
ldRX2 449419408
linPred 449419408
ptr 449419408
setTheta 449419408
sqrL 449419408
u 449419408
X 204549128
V 182171288
Ut 38448168
Zt 38448168
LamtUt 38353248
Xwts 3196024
RZX 1047176
Lambdat 38136
VtV 26192
delu 18408
u0 18408
Utr 18408
Lind 9224
beta0 496
delb 496
Vtr 496
theta 72
Ptr 40
答案 0 :(得分:4)
暂时发布为不完整的答案:
on
按照Steve Walker的S3 / S4 / Reference类字典列出和提取字段:
library("lme4")
gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
data = cbpp, family = binomial)
library("pryr")
object_size(gm1) ## 505 kB
值得进一步深入研究响应和预测模块,看看有什么/哪些是大的,并注意到一些信息将存储在那些组件的环境中
例如,我认为名义上相同大小的整个组件实际上并不是独立的,而是具有相同的环境......
get_obj_size <- function(obj,type="S4") {
fields <- switch(type,
S4=slotNames(obj),
RC=ls(obj))
get_field <- switch(type,
S4=function(x) slot(obj,x),
RC=function(x) obj[[x]])
field_list <- setNames(lapply(fields,get_field),fields)
cbind(sort(sapply(field_list,object_size),decreasing=TRUE))
}
get_obj_size(gm1)
## [,1]
## resp 356620 ## 'response module'
## pp 355420 ## 'predictor module'
## frame 6640
## optinfo 1748
## devcomp 1424
## call 1244
## flist 1232
## cnms 224
## u 152
## beta 56
## Gp 32
## lower 32
## theta 32
查看存储组件的另一种方法是使用get_obj_size(gm1@resp,"RC")
## [,1]
## initialize 356620
## initialize#lmResp 356620
## ptr 356620
## resDev 356620
## setOffset 356620
## updateMu 356620
## updateWts 356620
## wrss 356620
## family 26016
## eta 472
## mu 472
## n 472
## offset 472
## sqrtrwt 472
## sqrtXwt 472
## weights 472
## wtres 472
## y 472
## Ptr 20
并迭代通过object_size(getME(model,component))
列出的组件;这与信息在内部存储的方式不太精确对应,但可以让您了解需要多少空间来保存(例如)固定效应或随机效应模型矩阵。
我对此进行了更多的工作,并且有一个部分解决方案,但仍有很多存储,我似乎无法正确找到/删除(注意,这需要最新版本的Github上的eval(formals(getME)$name)
:我必须稍微修改lme4
函数以削弱对内部结构的依赖。)
predict
最后注意glmer_chop <- function(object) {
newobj <- object
newobj@frame <- model.frame(object)[0,]
newobj@pp <- with(object@pp,
new("merPredD",
Lambdat=Lambdat,
Lind=Lind,
theta=theta,
u=u,u0=u0,
n=nrow(X),
X=matrix(1,nrow=nrow(X)),
Zt=Zt)) ## .sparseDiagonal(n,shape="g")))
newobj@resp <- new("glmResp",family=binomial(),y=numeric(0))
return(newobj)
}
get_obj_size(environment(fm2@pp$initialize),"RC")
fm1 <- glmer(use ~ urban+age+livch+(1|district), Contraception, binomial)
object_size(Contraception) ## 133 kB
object_size(fm1) ## 1.05 MB
object_size(fm2 <- glmer_chop(fm1)) ## 699 kB
get_obj_size(fm2) ## 'pp' is 547200 bytes
get_obj_size(fm2@pp,"RC") ## 'initialize' object is 547200
saveRDS(fm2,file="tmp.rds")
fm2 <- readRDS("tmp.rds")
object_size(fm2) ## 796 kB
rm(fm1)
pp <- predict(fm2,newdata=Contraception)
object_size(fm2) ## still 796K; no sharing
确认此处的大部分信息都存储在环境中,而不是存储在对象本身中(但我不知道compare_size(fm2)
/ compare_size
如何处理参考班级......)
答案 1 :(得分:0)
您是否关注存储空间或RAM?如果它是关于存储的,一个选项是嵌入调用以在生成预测的代码中估计模型,因此您永远不会实际存储模型对象。类似的东西:
predictions <- predict(glmer(y ~ x, family = binomial), type = "response")