我是算法复杂性的新手,因此无法弄清楚以下两种算法的复杂性。两者都找出给定字符串的后缀数组。第一个由我自己创建,第二个是我在互联网上找到的。我想知道哪一个更快,为什么?
第一个算法
#include<iostream>
#include<string>
using namespace std;
struct suffix{
string str;
int pos;
};
int main()
{
string input;
suffix arr[100];
getline(cin,input,'\n');
for(int i=0;i<input.length();i++)
{
for(int j=i;j<input.length();j++)
{
arr[i].str+=input[j];
}
arr[i].pos=i;
for(int j=0;j<i;j++)
{
if(arr[i].str.compare(arr[j].str)<0)
{
string temp=arr[i].str;
arr[i].str=arr[j].str;
arr[j].str=temp;
int tem=arr[i].pos;
arr[i].pos=arr[j].pos;
arr[j].pos=tem;
break;
}
}
}
for(int i=0;i<input.length();i++)
cout<<arr[i].pos<<",";
return 0;
}
第二种算法
#include bits/stdc++.h
using namespace std;
// suffixRank is table hold the rank of each string on each iteration
// suffixRank[i][j] denotes rank of jth suffix at ith iteration
int suffixRank[20][int(1E6)];
// Example "abaab"
// Suffix Array for this (2, 3, 0, 4, 1)
// Create a tuple to store rank for each suffix
struct myTuple {
int originalIndex; // stores original index of suffix
int firstHalf; // store rank for first half of suffix
int secondHalf; // store rank for second half of suffix
};
// function to compare two suffix in O(1)
// first it checks whether first half chars of 'a' are equal to first half chars of b
// if they compare second half
// else compare decide on rank of first half
int cmp(myTuple a, myTuple b) {
if(a.firstHalf == b.firstHalf) return a.secondHalf < b.secondHalf;
else return a.firstHalf < b.firstHalf;
}
int main() {
// Take input string
// initialize size of string as N
string s; cin >> s;
int N = s.size();
// Initialize suffix ranking on the basis of only single character
// for single character ranks will be 'a' = 0, 'b' = 1, 'c' = 2 ... 'z' = 25
for(int i = 0; i < N; ++i)
suffixRank[0][i] = s[i] - 'a';
// Create a tuple array for each suffix
myTuple L[N];
// Iterate log(n) times i.e. till when all the suffixes are sorted
// 'stp' keeps the track of number of iteration
// 'cnt' store length of suffix which is going to be compared
// On each iteration we initialize tuple for each suffix array
// with values computed from previous iteration
for(int cnt = 1, stp = 1; cnt < N; cnt *= 2, ++stp) {
for(int i = 0; i < N; ++i) {
L[i].firstHalf = suffixRank[stp - 1][i];
L[i].secondHalf = i + cnt < N ? suffixRank[stp - 1][i + cnt] : -1;
L[i].originalIndex = i;
}
// On the basis of tuples obtained sort the tuple array
sort(L, L + N, cmp);
// Initialize rank for rank 0 suffix after sorting to its original index
// in suffixRank array
suffixRank[stp][L[0].originalIndex] = 0;
for(int i = 1, currRank = 0; i < N; ++i) {
// compare ith ranked suffix ( after sorting ) to (i - 1)th ranked suffix
// if they are equal till now assign same rank to ith as that of (i - 1)th
// else rank for ith will be currRank ( i.e. rank of (i - 1)th ) plus 1, i.e ( currRank + 1 )
if(L[i - 1].firstHalf != L[i].firstHalf || L[i - 1].secondHalf != L[i].secondHalf)
++currRank;
suffixRank[stp][L[i].originalIndex] = currRank;
}
}
// Print suffix array
for(int i = 0; i < N; ++i) cout << L[i].originalIndex << endl;
return 0;
}
答案 0 :(得分:2)
要确定给定N
哪一个运行得更快,您需要同时运行它们并查看。但是,为了确定哪一个会更好地扩展,你可以简单地浏览你的循环。
在您的第一个算法中,您有嵌套循环,这些循环从0
到input.size()
的增量为1,即O(N^2)
(如果input.size()
为1,两者都是循环运行一次总共一次运行,如果input.size()
为2,外循环运行两次,内循环运行两次,每次外循环运行总共4次迭代,依此类推)。
第二种算法的外部循环从0
到N
,并在每次迭代时乘以2
。这增长为log(N)
而不是N
。因此,它是O(N*log(N))
,小于O(N^2)
,并且可能会更好地扩展。