我正在尝试将线性回归(Normal Equation)与SGD进行比较,但看起来SGD远远不够。我做错了吗?
这是我的代码
x = np.random.randint(100, size=1000)
y = x * 0.10
slope, intercept, r_value, p_value, std_err = stats.linregress(x=x, y=y)
print("slope is %f and intercept is %s" % (slope,intercept))
#slope is 0.100000 and intercept is 1.61435309565e-11
这是我的SGD
x = x.reshape(1000,1)
clf = linear_model.SGDRegressor()
clf.fit(x, y, coef_init=0, intercept_init=0)
print(clf.intercept_)
print(clf.coef_)
#[ 1.46746270e+10]
#[ 3.14999003e+10]
我原以为coef
和intercept
几乎相同,因为数据是线性的。
答案 0 :(得分:1)
当我尝试运行此代码时,出现溢出错误。我怀疑你有同样的问题,但出于某种原因,它并没有抛出错误。
如果缩小功能,一切都按预期工作。使用scipy.stats.linregress
:
>>> x = np.random.random(1000) * 10
>>> y = x * 0.10
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x=x, y=y)
>>> print("slope is %f and intercept is %s" % (slope,intercept))
slope is 0.100000 and intercept is -2.22044604925e-15
使用linear_model.SGDRegressor
:
>>> clf.fit(x[:,None], y)
SGDRegressor(alpha=0.0001, epsilon=0.1, eta0=0.01, fit_intercept=True,
l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss',
n_iter=5, penalty='l2', power_t=0.25, random_state=None,
shuffle=False, verbose=0, warm_start=False)
>>> print("slope is %f and intercept is %s" % (clf.coef_, clf.intercept_[0]))
slope is 0.099763 and intercept is 0.00163353754797
slope
的值略低,但我猜是因为正规化。