我有
x=rnorm(100)
y=rnorm(100)
plot(x,y)
abline(h=0); abline(v=0)
从(0,0)
点开始向外,我想绘制一个轮廓/圆/椭圆/手绘凸包,包围任何给定百分点。
是否有可以自动执行此操作的功能或程序包?到目前为止,我已尝试过以下内容,但我只能通过一些推断和近似得到一个圆圈。
到目前为止我已尝试过这个:
#calculate radius
r<- sqrt(x^2+y^2)
df<-data.frame(radius=seq(0,3,0.1), percentage=NA)
#get the percentage of points that have a smaller radius than i
k<-1
for (i in seq(0,3,0.1)){
df$percentage[k] <- sum(r<i)/length(r)
k<-k+1
}
#extrapolation function
prox.function<- approxfun(df$percentage, df$radius)
#get the radius of the circle that encloses about 50% of
prox.function(.50)
#draw the circle
library(plotrix)
draw.circle(0,0,prox.function(.50))
答案 0 :(得分:6)
包围点的分数f的半径是:
f <- 0.5 # use half for this example as in the question
sort(r)[ ceiling(f * length(r)) ]
答案 1 :(得分:5)
是的,我们可以为ggplot创建一个新的geom,它将在数据中所有点的任意给定百分比周围绘制一个凸包。这类似于bagplot,并使用aplpack包中的bagplot函数中的一些代码(固定在50%的点)。
以下是新geom的定义,允许您选择要包含的点的百分比:
library(ggplot2)
# Here's the stat_
StatBag <- ggproto("Statbag", Stat,
compute_group = function(data, scales, prop = 0.5) {
#################################
#################################
# originally from aplpack package, plotting functions removed
plothulls_ <- function(x, y, fraction, n.hull = 1,
col.hull, lty.hull, lwd.hull, density=0, ...){
# function for data peeling:
# x,y : data
# fraction.in.inner.hull : max percentage of points within the hull to be drawn
# n.hull : number of hulls to be plotted (if there is no fractiion argument)
# col.hull, lty.hull, lwd.hull : style of hull line
# plotting bits have been removed, BM 160321
# pw 130524
if(ncol(x) == 2){ y <- x[,2]; x <- x[,1] }
n <- length(x)
if(!missing(fraction)) { # find special hull
n.hull <- 1
if(missing(col.hull)) col.hull <- 1
if(missing(lty.hull)) lty.hull <- 1
if(missing(lwd.hull)) lwd.hull <- 1
x.old <- x; y.old <- y
idx <- chull(x,y); x.hull <- x[idx]; y.hull <- y[idx]
for( i in 1:(length(x)/3)){
x <- x[-idx]; y <- y[-idx]
if( (length(x)/n) < fraction ){
return(cbind(x.hull,y.hull))
}
idx <- chull(x,y); x.hull <- x[idx]; y.hull <- y[idx];
}
}
if(missing(col.hull)) col.hull <- 1:n.hull
if(length(col.hull)) col.hull <- rep(col.hull,n.hull)
if(missing(lty.hull)) lty.hull <- 1:n.hull
if(length(lty.hull)) lty.hull <- rep(lty.hull,n.hull)
if(missing(lwd.hull)) lwd.hull <- 1
if(length(lwd.hull)) lwd.hull <- rep(lwd.hull,n.hull)
result <- NULL
for( i in 1:n.hull){
idx <- chull(x,y); x.hull <- x[idx]; y.hull <- y[idx]
result <- c(result, list( cbind(x.hull,y.hull) ))
x <- x[-idx]; y <- y[-idx]
if(0 == length(x)) return(result)
}
result
} # end of definition of plothulls
#################################
# prepare data to go into function below
the_matrix <- matrix(data = c(data$x, data$y), ncol = 2)
# get data out of function as df with names
setNames(data.frame(plothulls_(the_matrix, fraction = prop)), nm = c("x", "y"))
# how can we get the hull and loop vertices passed on also?
},
required_aes = c("x", "y")
)
# Here's the stat_ function
#' @inheritParams ggplot2::stat_identity
#' @param prop Proportion of all the points to be included in the bag (default is 0.5)
stat_bag <- function(mapping = NULL, data = NULL, geom = "polygon",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, prop = 0.5, alpha = 0.3, ...) {
layer(
stat = StatBag, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, prop = prop, alpha = alpha, ...)
)
}
# here's the geom_
geom_bag <- function(mapping = NULL, data = NULL,
stat = "identity", position = "identity",
prop = 0.5,
alpha = 0.3,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = StatBag,
geom = GeomBag,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
na.rm = na.rm,
alpha = alpha,
prop = prop,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
GeomBag <- ggproto("GeomBag", Geom,
draw_group = function(data, panel_scales, coord) {
n <- nrow(data)
if (n == 1) return(zeroGrob())
munched <- coord_munch(coord, data, panel_scales)
# Sort by group to make sure that colors, fill, etc. come in same order
munched <- munched[order(munched$group), ]
# For gpar(), there is one entry per polygon (not one entry per point).
# We'll pull the first value from each group, and assume all these values
# are the same within each group.
first_idx <- !duplicated(munched$group)
first_rows <- munched[first_idx, ]
ggplot2:::ggname("geom_bag",
grid:::polygonGrob(munched$x, munched$y, default.units = "native",
id = munched$group,
gp = grid::gpar(
col = first_rows$colour,
fill = alpha(first_rows$fill, first_rows$alpha),
lwd = first_rows$size * .pt,
lty = first_rows$linetype
)
)
)
},
default_aes = aes(colour = "NA", fill = "grey20", size = 0.5, linetype = 1,
alpha = NA, prop = 0.5),
handle_na = function(data, params) {
data
},
required_aes = c("x", "y"),
draw_key = draw_key_polygon
)
以下是一些例子。我们可以将三个凸包与不同的alpha级别叠加在一起,以显示数据的中心位置及其范围:
ggplot(mpg, aes(displ, hwy, fill = drv, colour = drv)) +
geom_point() +
geom_bag(prop = 0.95) + # enclose 95% of points
geom_bag(prop = 0.5, alpha = 0.5) + # enclose 50% of points
geom_bag(prop = 0.1, alpha = 0.8) # enclose 5% of points
ggplot(iris, aes(Sepal.Length, Petal.Length, colour = Species, fill = Species)) +
geom_point() +
stat_bag(prop = 0.95) + # enclose 95% of points
stat_bag(prop = 0.5, alpha = 0.5) + # enclose 50% of points
stat_bag(prop = 0.05, alpha = 0.9) # enclose 5% of points