凸面船体4点

时间:2010-01-23 05:56:39

标签: algorithm graphics computational-geometry convex-hull

我想要一种算法来计算4个2D点的凸包。我已经研究了广义问题的算法,但我想知道是否有一个简单的4点解决方案。

8 个答案:

答案 0 :(得分:18)

取三个点,确定它们的三角形是顺时针还是逆时针::

triangle_ABC= (A.y-B.y)*C.x + (B.x-A.x)*C.y + (A.x*B.y-B.x*A.y)

对于右手坐标系,如果ABC为逆时针,则该值为正,顺时针为负,如果为共线则为零。但是,以下对于左手坐标系也同样适用,因为方向是相对的。

计算包含第四个点的三个三角形的可比较值:

triangle_ABD= (A.y-B.y)*D.x + (B.x-A.x)*D.y + (A.x*B.y-B.x*A.y)
triangle_BCD= (B.y-C.y)*D.x + (C.x-B.x)*D.y + (B.x*C.y-C.x*B.y)
triangle_CAD= (C.y-A.y)*D.x + (A.x-C.x)*D.y + (C.x*A.y-A.x*C.y)

如果{ABD,BCD,CAD}的所有三个符号都与ABC相同,那么D在ABC中,而船体是三角形ABC。

如果{ABD,BCD,CAD}中的两个具有与ABC相同的符号,并且一个具有相反的符号,那么所有四个点都是极值的,并且船体是四边形ABCD。

如果{ABD,BCD,CAD}中的一个具有与ABC相同的符号,并且两个具有相反的符号,则凸包是具有相同符号的三角形;剩下的一点就在里面。

如果任何三角形值为零,则三个点共线,中间点不是极值。如果所有四个点都是共线的,则所有四个值都应为零,并且船体将是一条线或一条点。在这些情况下要注意数值稳健性问题!

对于ABC为阳性的情况:

ABC  ABD  BCD  CAD  hull
------------------------
 +    +    +    +   ABC
 +    +    +    -   ABCD
 +    +    -    +   ABDC
 +    +    -    -   ABD
 +    -    +    +   ADBC
 +    -    +    -   BCD
 +    -    -    +   CAD
 +    -    -    -   [should not happen]

答案 1 :(得分:3)

或者只使用Jarvis march

答案 2 :(得分:1)

这是一个特定于4点的特别算法:

  • 找到最小-X,最大-X,最小-Y和最大-Y的点的索引,并从中获取唯一值。例如,索引可以是0,2,1,2,唯一值将是0,2,1。
  • 如果有4个唯一值,则凸包由所有4个点组成。
  • 如果有3个唯一值,则这3个点肯定在凸包中。检查第四点是否位于此三角形内;如果没有,它也是凸包的一部分。
  • 如果有2个唯一值,则这2个点位于船体上。在其他2个点中,离这条线加入这两个点的点肯定是在船体上。进行三角形遏制测试以检查另一个点是否也在船体中。
  • 如果有1个唯一值,那么所有4个点都是共同发生的。

如果有4个点可以正确排序,则需要进行一些计算,以避免获得蝴蝶结形状。嗯....看起来有足够的特殊情况来证明使用广义算法。但是,您可以将其调整为比通用算法更快地运行。

答案 3 :(得分:0)

我根据礼品包装算法的原始版本做了a proof of concept fiddle

在一般情况下效率不高,但只有4分。

function Point (x, y)
{
    this.x = x;
    this.y = y;
}

Point.prototype.equals = function (p)
{
    return this.x == p.x && this.y == p.y;
};

Point.prototype.distance = function (p)
{ 
    return Math.sqrt (Math.pow (this.x-p.x, 2) 
                    + Math.pow (this.y-p.y, 2));
};

function convex_hull (points)
{
    function left_oriented (p1, p2, candidate)
    {
        var det = (p2.x - p1.x) * (candidate.y - p1.y) 
                - (candidate.x - p1.x) * (p2.y - p1.y);
        if (det > 0) return true;  // left-oriented 
        if (det < 0) return false; // right oriented
        // select the farthest point in case of colinearity
        return p1.distance (candidate) > p1.distance (p2);
    }

    var N = points.length;
    var hull = [];

    // get leftmost point
    var min = 0;
    for (var i = 1; i != N; i++)
    {
        if (points[i].y < points[min].y) min = i;
    }
    hull_point = points[min];

    // walk the hull
    do
    {
        hull.push(hull_point);

        var end_point = points[0];
        for (var i = 1; i != N; i++) 
        {
            if (  hull_point.equals (end_point)
               || left_oriented (hull_point, 
                                 end_point, 
                                 points[i]))
            {
                end_point = points[i];
            }
        }
        hull_point = end_point;
    }
    /*
     * must compare coordinates values (and not simply objects)
     * for the case of 4 co-incident points
     */
    while (!end_point.equals (hull[0])); 
    return hull;
}

很有趣:)

答案 4 :(得分:0)

我使用查找表编写了一个快速实现来自暴风雨的答案。由于我的应用程序不需要它,因此所有四个点都是共线的情况是处理。如果点是共线的,则算法将第一个指针点[0]设置为空。如果point [3]是空指针,则船体包含3个点,否则船体有​​4个点。对于坐标系,船体是逆时针顺序,其中y轴指向顶部,x轴指向右侧。

const char hull4_table[] = {        
    1,2,3,0,1,2,3,0,1,2,4,3,1,2,3,0,1,2,3,0,1,2,4,0,1,2,3,4,1,2,4,0,1,2,4,0,
    1,2,3,0,1,2,3,0,1,4,3,0,1,2,3,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,
    1,4,2,3,1,4,3,0,1,4,3,0,2,3,4,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,2,4,3,0,0,0,0,0,0,0,0,0,1,2,4,0,1,3,4,0,1,2,4,0,1,2,4,0,
    0,0,0,0,0,0,0,0,1,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,4,0,0,0,0,0,0,0,0,0,
    1,4,2,0,1,4,2,0,1,4,3,0,1,4,2,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,2,4,3,0,0,0,0,0,0,0,0,0,2,4,3,0,1,3,4,0,1,3,4,0,1,3,2,4,
    0,0,0,0,0,0,0,0,2,4,3,0,0,0,0,0,0,0,0,0,1,3,2,0,1,3,4,0,1,3,2,0,1,3,2,0,
    1,4,2,0,1,4,2,0,1,4,3,2,1,4,2,0,1,3,2,0,1,3,2,0,1,3,4,2,1,3,2,0,1,3,2,0
};
struct Vec2i {
    int x, y;
};
typedef long long int64;    
inline int sign(int64 x) {
    return (x > 0) - (x < 0);
}
inline int64 orientation(const Vec2i& a, const Vec2i& b, const Vec2i& c) {
    return (int64)(b.x - a.x) * (c.y - b.y) - (b.y - a.y) * (c.x - b.x);
}

void convex_hull4(const Vec2i** points) {
    const Vec2i* p[5] = {(Vec2i*)0, points[0], points[1], points[2], points[3]};
    char abc = (char)1 - sign(orientation(*points[0], *points[1], *points[2]));
    char abd = (char)1 - sign(orientation(*points[0], *points[1], *points[3]));
    char cad = (char)1 - sign(orientation(*points[2], *points[0], *points[3]));
    char bcd = (char)1 - sign(orientation(*points[1], *points[2], *points[3]));

    const char* t = hull4_table + (int)4 * (bcd + 3*cad + 9*abd + 27*abc);
    points[0] = p[t[0]];
    points[1] = p[t[1]];
    points[2] = p[t[2]];
    points[3] = p[t[3]];
}

答案 5 :(得分:0)

基于@comingstorm回答我创建了Swift解决方案:

func convexHull4(a: Pt, b: Pt, c: Pt, d: Pt) -> [LineSegment]? {

    let abc = (a.y-b.y)*c.x + (b.x-a.x)*c.y + (a.x*b.y-b.x*a.y)
    let abd = (a.y-b.y)*d.x + (b.x-a.x)*d.y + (a.x*b.y-b.x*a.y)
    let bcd = (b.y-c.y)*d.x + (c.x-b.x)*d.y + (b.x*c.y-c.x*b.y)
    let cad = (c.y-a.y)*d.x + (a.x-c.x)*d.y + (c.x*a.y-a.x*c.y)

    if  (abc > 0 && abd > 0 && bcd > 0 && cad > 0) ||
        (abc < 0 && abd < 0 && bcd < 0 && cad < 0) {
        //abc
        return [
            LineSegment(p1: a, p2: b),
            LineSegment(p1: b, p2: c),
            LineSegment(p1: c, p2: a)
        ]
    } else if   (abc > 0 && abd > 0 && bcd > 0 && cad < 0) ||
                (abc < 0 && abd < 0 && bcd < 0 && cad > 0) {
        //abcd
        return [
            LineSegment(p1: a, p2: b),
            LineSegment(p1: b, p2: c),
            LineSegment(p1: c, p2: d),
            LineSegment(p1: d, p2: a)
        ]
    } else if   (abc > 0 && abd > 0 && bcd < 0 && cad > 0) ||
                (abc < 0 && abd < 0 && bcd > 0 && cad < 0) {
        //abdc
        return [
            LineSegment(p1: a, p2: b),
            LineSegment(p1: b, p2: d),
            LineSegment(p1: d, p2: c),
            LineSegment(p1: c, p2: a)
        ]
    } else if   (abc > 0 && abd < 0 && bcd > 0 && cad > 0) ||
                (abc < 0 && abd > 0 && bcd < 0 && cad < 0) {
        //acbd
        return [
            LineSegment(p1: a, p2: c),
            LineSegment(p1: c, p2: b),
            LineSegment(p1: b, p2: d),
            LineSegment(p1: d, p2: a)
        ]
    } else if   (abc > 0 && abd > 0 && bcd < 0 && cad < 0) ||
                (abc < 0 && abd < 0 && bcd > 0 && cad > 0) {
        //abd
        return [
            LineSegment(p1: a, p2: b),
            LineSegment(p1: b, p2: d),
            LineSegment(p1: d, p2: a)
        ]
    } else if   (abc > 0 && abd < 0 && bcd > 0 && cad < 0) ||
                (abc < 0 && abd > 0 && bcd < 0 && cad > 0) {
        //bcd
        return [
            LineSegment(p1: b, p2: c),
            LineSegment(p1: c, p2: d),
            LineSegment(p1: d, p2: b)
        ]
    } else if   (abc > 0 && abd < 0 && bcd < 0 && cad > 0) ||
                (abc < 0 && abd > 0 && bcd > 0 && cad < 0) {
        //cad
        return [
            LineSegment(p1: c, p2: a),
            LineSegment(p1: a, p2: d),
            LineSegment(p1: d, p2: c)
        ]
    }

    return nil

}

答案 6 :(得分:0)

基于comestorm的解决方案,我创建了一个C#解决方案来处理退化情况(例如,4个点形成线或点)。

https://gist.github.com/miyu/6e32e993d93d932c419f1f46020e23f0

  public static IntVector2[] ConvexHull3(IntVector2 a, IntVector2 b, IntVector2 c) {
     var abc = Clockness(a, b, c);
     if (abc == Clk.Neither) {
        var (s, t) = FindCollinearBounds(a, b, c);
        return s == t ? new[] { s } : new[] { s, t };
     }
     if (abc == Clk.Clockwise) {
        return new[] { c, b, a };
     }
     return new[] { a, b, c };
  }

  public static (IntVector2, IntVector2) FindCollinearBounds(IntVector2 a, IntVector2 b, IntVector2 c) {
     var ab = a.To(b).SquaredNorm2();
     var ac = a.To(c).SquaredNorm2();
     var bc = b.To(c).SquaredNorm2();
     if (ab > ac) {
        return ab > bc ? (a, b) : (b, c);
     } else {
        return ac > bc ? (a, c) : (b, c);
     }
  }

  // See https://stackoverflow.com/questions/2122305/convex-hull-of-4-points
  public static IntVector2[] ConvexHull4(IntVector2 a, IntVector2 b, IntVector2 c, IntVector2 d) {
     var abc = Clockness(a, b, c);

     if (abc == Clk.Neither) {
        var (s, t) = FindCollinearBounds(a, b, c);
        return ConvexHull3(s, t, d);
     }

     // make abc ccw
     if (abc == Clk.Clockwise) (a, c) = (c, a);

     var abd = Clockness(a, b, d);
     var bcd = Clockness(b, c, d);
     var cad = Clockness(c, a, d);

     if (abd == Clk.Neither) {
        var (s, t) = FindCollinearBounds(a, b, d);
        return ConvexHull3(s, t, c);
     }

     if (bcd == Clk.Neither) {
        var (s, t) = FindCollinearBounds(b, c, d);
        return ConvexHull3(s, t, a);
     }

     if (cad == Clk.Neither) {
        var (s, t) = FindCollinearBounds(c, a, d);
        return ConvexHull3(s, t, b);
     }

     if (abd == Clk.CounterClockwise) {
        if (bcd == Clk.CounterClockwise && cad == Clk.CounterClockwise) return new[] { a, b, c };
        if (bcd == Clk.CounterClockwise && cad == Clk.Clockwise) return new[] { a, b, c, d };
        if (bcd == Clk.Clockwise && cad == Clk.CounterClockwise) return new[] { a, b, d, c };
        if (bcd == Clk.Clockwise && cad == Clk.Clockwise) return new[] { a, b, d };
        throw new InvalidStateException();
     } else {
        if (bcd == Clk.CounterClockwise && cad == Clk.CounterClockwise) return new[] { a, d, b, c };
        if (bcd == Clk.CounterClockwise && cad == Clk.Clockwise) return new[] { d, b, c };
        if (bcd == Clk.Clockwise && cad == Clk.CounterClockwise) return new[] { a, d, c };
        // 4th state impossible
        throw new InvalidStateException();
     }
  }

您需要为矢量类型实现此样板:

  // relative to screen coordinates, so top left origin, x+ right, y+ down.
  // clockwise goes from origin to x+ to x+/y+ to y+ to origin, like clockwise if
  // you were to stare at a clock on your screen
  //
  // That is, if you draw an angle between 3 points on your screen, the clockness of that
  // direction is the clockness this would return.
  public enum Clockness {
     Clockwise = -1,
     Neither = 0,
     CounterClockwise = 1
  }
  public static Clockness Clockness(IntVector2 a, IntVector2 b, IntVector2 c) => Clockness(b - a, b - c);
  public static Clockness Clockness(IntVector2 ba, IntVector2 bc) => Clockness(ba.X, ba.Y, bc.X, bc.Y);
  public static Clockness Clockness(cInt ax, cInt ay, cInt bx, cInt by, cInt cx, cInt cy) => Clockness(bx - ax, by - ay, bx - cx, by - cy);
  public static Clockness Clockness(cInt bax, cInt bay, cInt bcx, cInt bcy) => (Clockness)Math.Sign(Cross(bax, bay, bcx, bcy));

答案 7 :(得分:0)

这里是对问题的完整分析和有效的 红宝石代码(可最大程度地减少比较次数)

#   positions for d:
#
#           abc > 0                               abc < 0
#         (+-+- doesn't exist)               (-+-+ doesn't exist)
#
#
#                     |        /       ---+ \   --++    | -+++
#                     |       /        bdc   \  acbd    | acd
#                     | +-++ /                \         |
#                     | abd /         ---------A--------B---------
#                     |    /                    \  --+- |
#                     |   /                      \ acb  |
#                     |  /                        \     |
#                     | /                          \    |
#                     |/                  ----      \   | -++-
#                     C                   adcb       \  | acdb
#                    /|                               \ |
#                   / |                                \|
#         ++++     /  |                                 C
#         abcd    /   |                                 |\
#                /    | +--+                            | \
#               /     | abdc                            |  \
#              / ++-+ |                                 |   \
#             /  abc  |                                 |    \
#   ---------A--------B---------                        |     \
#     +++-  /         |                                 |      \
#     bcd  /   ++--   | +---                            | -+--  \
#         /    adbc   | adc                             | adb    \
#
#   or as table
#
#   ++++ abcd       -+++ acd
#   +++- bcd        -++- acdb
#   ++-+ abc        -+-+ XXXX
#   ++-- adbc       -+-- adb
#   +-++ abd        --++ acbd
#   +-+- XXXX       --+- acb
#   +--+ abdc       ---+ bdc
#   +--- adc        ---- adcb
#
# if there are some collinear points, the hull will be nil (for the moment)
#
def point_point_point_orientation(p, q, r)
  (q.x - p.x) * (r.y - q.y) - (q.y - p.y) * (r.x - q.x)
end



def convex_hull_4_points(a, b, c, d)
  abc = point_point_point_orientation(a, b, c)
  if abc.zero?
    # todo
    return nil
  end

  bcd = point_point_point_orientation(b, c, d)
  if bcd.zero?
    # todo
    return nil
  end

  cda = point_point_point_orientation(c, d, a)
  if cda.zero?
    # todo
    return nil
  end

  dab = point_point_point_orientation(d, a, b)
  if dab.zero?
    # todo
    return nil
  end

  if abc.positive?
    if bcd.positive?
      if cda.positive?
        if dab.positive?
          [a, b, c, d] # ++++
        else
          [b, c, d]    # +++-
        end
      else
        if dab.positive?
          [a, b, c]    # ++-+
        else
          [a, d, b, c] # ++--
        end
      end
    else
      if cda.positive?
        if dab.positive?
          [a, b, d]    # +-++
        else
          raise        # +-+-
        end
      else
        if dab.positive?
          [a, b, d, c] # +--+
        else
          [a, d, c]    # +---
        end
      end
    end
  else
    if bcd.positive?
      if cda.positive?
        if dab.positive?
          [a, c, d]    # -+++
        else
          [a, c, d, b] # -++-
        end
      else
        if dab.positive?
          raise        # -+-+
        else
          [a, d, b]    # -+--
        end
      end
    else
      if cda.positive?
        if dab.positive?
          [a, c, b, d] # --++
        else
          [a, c, b]    # --+-
        end
      else
        if dab.positive?
          [b, d, c]    # ---+
        else
          [a, d, c, b] # ----
        end
      end
    end
  end
end