Z3py returns unknown for the following simple problem using pow() function.
import z3;
goal = z3.Goal();
goal = z3.Then('purify-arith','nlsat');
solver = goal.solver();
x = z3.Real('x');
solver.add(x <= 1.8);
solver.add(x >= 0);
z = 10**x;
#z = pow(10,x) returns same result
solver.add(z >= 0, z <= 1.8);
print solver.check()
returns
unknown
Obviously x = 0, z = 1
is a satisfactory solution. Any suggestions in changing the way the equations are constructed, or modifying the tactics are appreciated.
答案 0 :(得分:1)
可能存在一些错误,但以下内容会返回x = 0
和z = 1
的模型,即使它未知。假设Python API也显示了这个模型,你可以创建一个简单的hack来提取模型并将其添加到要检查的断言中,类似于这会阻止未来模型重用旧模型值:Z3: finding all satisfying models
以下是示例(rise4fun链接:http://rise4fun.com/Z3/dPnI):
(declare-const x Real)
(declare-const z Real)
(assert (>= x 0.0))
(assert (<= x 1.8))
(assert (= z (^ 10.0 x)))
(assert (<= z 1.8))
(assert (>= z 0.0))
(apply (repeat (then purify-arith simplify ctx-simplify ctx-solver-simplify nlsat qfnra-nlsat))) ; gives:
; (goals
;(goal
; (>= x 0.0)
; (<= x (/ 9.0 5.0))
; (<= (^ 10.0 x) (/ 9.0 5.0))
; (>= (^ 10.0 x) 0.0)
; :precision precise :depth 44)
;)
; (apply (repeat (then (repeat purify-arith) (repeat simplify) (repeat ctx-simplify) (repeat ctx-solver-simplify) (repeat nlsat) (repeat qfnra-nlsat))))
(check-sat) ; unknown
;(check-sat-using qfnra-nlsat) ; unknown
(get-model) ; gives x = 0.0 and z = 1.0 even though unknown from check-sat
; could extract 0 and 1 in python API and check whether it's sat:
(assert (= x 0))
(assert (= z 1))
(check-sat) ; sat
您可能也对此相关帖子感兴趣:Z3 support for square root
为了完整性,这里是Python中的模型提取思想似乎有效(使用4.3.3,可能是不稳定的构建,但不久前可能):
import z3;
print z3.get_version_string();
goal = z3.Goal();
goal = z3.Then('purify-arith','nlsat');
#solver = goal.solver();
solver = z3.Solver();
x = z3.Real('x');
z = z3.Real('z');
solver.add(x <= 1.8);
solver.add(x >= 0);
solver.add(z == 10.0 ** x);
# z = 10**x;
#z = pow(10,x) returns same result
solver.add(z >= 0, z <= 1.8);
print solver
print solver.check()
print solver.model()
m = solver.model()
solver.add(x == m[x])
solver.add(z == m[z])
print solver
print solver.check()
这给出了:
D:\>python exponent.py
4.3.3
[x <= 9/5, x >= 0, z == 10**x, z >= 0, z <= 9/5]
unknown
[x = 0, z = 1]
[x <= 9/5,
x >= 0,
z == 10**x,
z >= 0,
z <= 9/5,
x == 0,
z == 1]
sat