我正在创建一个基本的RSA加密程序,而没有使用接收秘密消息的RSA库,该程序将字符串中的每个字符转换为其ASCII值,使用公共密钥加密并连接这些值,然后使用私有解密键并将其返回到字符串。
全部以cipher = pow(plain,e,n)
和plain = pow(cipher,d,n)
为原则。我的问题是,当数字很大时,我需要d
和n
至少要为16位数字,pow()
函数似乎会导致计算错误,从而产生ASCII值超出了转换为字符的范围。几天来,我一直在努力找出我要去哪里。任何帮助表示赞赏。下面的代码:
from random import randrange, getrandbits
def is_prime(n, k=128):
# Test if n is not even.
# But care, 2 is prime !
if n == 2 or n == 3:
return True
if n <= 1 or n % 2 == 0:
return False
# find r and s
s = 0
r = n - 1
while r & 1 == 0:
s += 1
r //= 2
# do k tests
for q in range(k):
a = randrange(2, n - 1)
x = pow(a, r, n)
if x != 1 and x != n - 1:
j = 1
while j < s and x != n - 1:
x = pow(x, 2, n)
if x == 1:
return False
j += 1
if x != n - 1:
return False
return True
def generate_prime_candidate(length):
# generate random bits
p = getrandbits(length)
#p = randrange(10**7,9*(10**7))
# apply a mask to set MSB and LSB to 1
p |= (1 << length - 1) | 1
return p
def generate_prime_number(length=64):
p = 4
# keep generating while the primality test fail
while not is_prime(p, 128):
p = generate_prime_candidate(length)
return p
def gcd(a, b):
while b != 0:
a, b = b, a % b
return a
def generate_keypair(p, q):
n = p * q
#Phi is the totient of n
phi = (p-1) * (q-1)
#Choose an integer e such that e and phi(n) are coprime
e = randrange(1,65537)
g = gcd(e, phi)
while g != 1:
e = randrange(1,65537)
g = gcd(e, phi)
d = multiplicative_inverse(e, phi)
return ((e, n), (d, n))
def multiplicative_inverse(e, phi):
d = 0
k = 1
while True:
d = (1+(k*phi))/e
if((round(d,5)%1) == 0):
return int(d)
else:
k+=1
def encrypt(m,public):
key, n = public
encrypted = ''
print("Your original message is: ", m)
result = [(ord(m[i])) for i in range(0,len(m))]
encryption = [pow(result[i],key,n) for i in range(0,len(result))]
for i in range(0,len(encryption)):
encrypted = encrypted + str(encryption[i])
#encrypted = pow(int(encrypted),key,n)
print("Your encrypted message is: ", encrypted)
#return result,encrypted
return encrypted, encryption
def decrypt(e,c,private):
key, n = private
print("Your encrypted message is: ", c)
print(e)
decryption = [pow(e[i],key,n) for i in range(0,len(e))]
print(decryption)
result = [chr(decryption[i])for i in range(0,len(decryption)) ]
decrypted = ''.join(result)
print("Your decrypted message is: ",decrypted)
return result,decrypted
def fastpow(x,y,p):
res = 1
x = x%p
while(y>0):
if((y&1) == 1):
res = (res*x)%p
y = y>>1
x = (x*x)%p
return res
message = input("Enter your secret message: ")
p1 = generate_prime_number()
p2 = generate_prime_number()
public, private = generate_keypair(p1,p2)
print("Your public key is ", public)
print("Your private key is ", private)
encrypted,cipher = encrypt(message,public)
decrypt(cipher,encrypted,private)
跟踪:
File "<ipython-input-281-bce7c44b930c>", line 1, in <module>
runfile('C:/Users/Mervin/Downloads/group2.py', wdir='C:/Users/Mervin/Downloads')
File "C:\Users\Mervin\Anaconda3\lib\site-packages\spyder\util\site\sitecustomize.py", line 705, in runfile
execfile(filename, namespace)
File "C:\Users\Mervin\Anaconda3\lib\site-packages\spyder\util\site\sitecustomize.py", line 102, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/Mervin/Downloads/group2.py", line 125, in <module>
decrypt(cipher,encrypted,private)
File "C:/Users/Mervin/Downloads/group2.py", line 100, in decrypt
result = [chr(decryption[i])for i in range(0,len(decryption)) ]
File "C:/Users/Mervin/Downloads/group2.py", line 100, in <listcomp>
result = [chr(decryption[i])for i in range(0,len(decryption)) ]
OverflowError: Python int too large to convert to C long
答案 0 :(得分:0)
您的方法multiplicative_inverse
不正确。我不确定您使用舍入法和浮点除法在该方法中正在做什么,但是即使您正确地修改了该部分,它仍然会太慢,需要O(φ)步骤。计算modular multiplicative inverses的常用方法是extended Euclidean algorithm的改编,它以O(log(φ) 2 )个步骤运行。这是从Wikipedia文章中的psuedocode到python 3代码的直接映射:
def multiplicative_inverse(a, n):
t, newt = 0, 1
r, newr = n, a
while newr:
quotient = r // newr
t, newt = newt, t - quotient * newt
r, newr = newr, r - quotient * newr
if r > 1:
raise ZeroDivisionError("{} is not invertible".format(a))
if t < 0:
t = t + n
return t