我打算以并行的方式计算大量的数字方形,这些数字方形在一天结束时使用一组共同的数据用于所有计算(一个相当大的根和重量阵列,大约25 Kb的内存)。高斯 - 勒让德正交方法很简单。我想通过声明设备 double * d_droot,* d_dweight来提供设备中的所有线程,根和权重。但我遗漏了一些东西,因为我必须明确地传递指向数组的指针,以使我的内核运行良好。我怎么能正确地做到这一点?更重要的是,为了在设备上提供更多可用内存,是否可以将根和权重刻录到设备内存的某个恒定部分?
附上代码
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
__device__ double *d_droot, *d_dweight;
__device__ __host__
double f(double alpha,double x)
{
/*function to be integrated via gauss-legendre quadrature. */
return exp(alpha*x);
}
__global__
void lege_inte2(int n, double alpha, double a, double b, double *lroots, double *weight, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
lroots[]: roots for the quadrature
weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
result[i] += weight[dummy] * f(alpha,c1 * lroots[dummy] + c2)*c1;
}
}
__global__
void lege_inte2_shared(int n,double alpha, double a, double b, double *result)
{
extern __shared__ double *d_droot;
extern __shared__ double *d_dweight;
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
d_root[]: roots for the quadrature
d_weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
{
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
printf(" Vale: %f \n", d_dweight[dummy]);
}
}
}
int main(void)
{
int N = 1<<23;
int N_nodes = 5;
double *droot, *dweight, *dresult, *d_dresult;
/*double version in host*/
droot =(double*)malloc(N_nodes*sizeof(double));
dweight =(double*)malloc(N_nodes*sizeof(double));
dresult =(double*)malloc(N*sizeof(double)); /*will recibe the results of N quadratures!*/
/*double version in device*/
cudaMalloc(&d_droot, N_nodes*sizeof(double));
cudaMalloc(&d_dweight, N_nodes*sizeof(double));
cudaMalloc(&d_dresult, N*sizeof(double)); /*results for N quadratures will be contained here*/
/*double version of the roots and weights*/
droot[0] = 0.90618;
droot[1] = 0.538469;
droot[2] = 0.0;
droot[3] = -0.538469;
droot[4] = -0.90618;
dweight[0] = 0.236927;
dweight[1] = 0.478629;
dweight[2] = 0.568889;
dweight[3] = 0.478629;
dweight[4] = 0.236927;
/*double copy host-> device*/
cudaMemcpy(d_droot, droot, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_dweight, dweight, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
// Perform SAXPY on 1M element
lege_inte2<<<(N+255)/256, 256>>>(N,1.0, -3.0, 3.0, d_droot, d_dweight, d_dresult); /*This kerlnel works OK*/
//lege_inte2_shared<<<(N+255)/256, 256>>>(N, -3.0, 3.0, d_dresult); /*why this one does not work? */
cudaMemcpy(dresult, d_dresult, N*sizeof(double), cudaMemcpyDeviceToHost);
double maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = max(maxError, abs(dresult[i]-20.03574985));
printf("Max error: %f in %i quadratures \n", maxError, N);
printf("integral: %f \n" ,dresult[0]);
cudaFree(dresult);
cudaFree(d_droot);
cudaFree(d_dweight);
}
和编译它的makefile:
objects = main.o
all: $(objects)
nvcc -Xcompiler -std=c99 -arch=sm_20 $(objects) -o gauss
%.o: %.cpp
nvcc -x cu -arch=sm_20 -I. -dc $< -o $@
clean:
rm -f *.o gauss
提前感谢任何建议
答案 0 :(得分:1)
您对d_droot
和d_dweight
的处理有各种各样的错误。当我编译你的代码时,我得到了各种各样的警告:
t640.cu(86): warning: address of a __shared__ variable "d_droot" cannot be directly taken in a host function
t640.cu(87): warning: address of a __shared__ variable "d_dweight" cannot be directly taken in a host function
t640.cu(108): warning: a __shared__ variable "d_droot" cannot be directly read in a host function
t640.cu(109): warning: a __shared__ variable "d_dweight" cannot be directly read in a host function
不容忽视。
这些声明:
__device__ double *d_droot, *d_dweight;
不要定义__shared__
变量,所以这些行:
extern __shared__ double *d_droot;
extern __shared__ double *d_dweight;
毫无意义。此外,如果您确实希望这些是dynamically allocated shared variables(extern __shared__
用于什么),则需要将分配大小作为第3个内核启动参数传递,您不会这样做。
这些陈述不正确:
cudaMalloc(&d_droot, N_nodes*sizeof(double));
cudaMalloc(&d_dweight, N_nodes*sizeof(double));
您无法在主机代码中获取__device__
变量的地址,我们也无法使用cudaMalloc
分配__device__
变量;根据定义,它是静态分配。
我建议做正确的cuda错误检查。作为快速测试,您还可以使用cuda-memcheck
运行代码。这两种方法都表明代码中存在运行时错误(尽管不是任何问题的关键)。
这些陈述也不正确:
cudaMemcpy(d_droot, droot, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_dweight, dweight, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy
not the correct API to use为__device__
个变量。请改用cudaMemcpyToSymbol
。
以下代码修复了这些不同的使用错误,将干净地编译,并且似乎正确运行。它表明没有必要将__device__
变量作为内核参数传递:
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
__device__ double *d_droot, *d_dweight;
__device__ __host__
double f(double alpha,double x)
{
/*function to be integrated via gauss-legendre quadrature. */
return exp(alpha*x);
}
__global__
void lege_inte2(int n, double alpha, double a, double b, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
lroots[]: roots for the quadrature
weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
}
}
__global__
void lege_inte2_shared(int n,double alpha, double a, double b, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
d_root[]: roots for the quadrature
d_weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
{
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
printf(" Vale: %f \n", d_dweight[dummy]);
}
}
}
int main(void)
{
int N = 1<<23;
int N_nodes = 5;
double *droot, *dweight, *dresult, *d_dresult, *d_droot_temp, *d_dweight_temp;
/*double version in host*/
droot =(double*)malloc(N_nodes*sizeof(double));
dweight =(double*)malloc(N_nodes*sizeof(double));
dresult =(double*)malloc(N*sizeof(double)); /*will recibe the results of N quadratures!*/
/*double version in device*/
cudaMalloc(&d_droot_temp, N_nodes*sizeof(double));
cudaMalloc(&d_dweight_temp, N_nodes*sizeof(double));
cudaMalloc(&d_dresult, N*sizeof(double)); /*results for N quadratures will be contained here*/
/*double version of the roots and weights*/
droot[0] = 0.90618;
droot[1] = 0.538469;
droot[2] = 0.0;
droot[3] = -0.538469;
droot[4] = -0.90618;
dweight[0] = 0.236927;
dweight[1] = 0.478629;
dweight[2] = 0.568889;
dweight[3] = 0.478629;
dweight[4] = 0.236927;
/*double copy host-> device*/
cudaMemcpy(d_droot_temp, droot, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_dweight_temp, dweight, N_nodes*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(d_droot, &d_droot_temp, sizeof(double *));
cudaMemcpyToSymbol(d_dweight, &d_dweight_temp, sizeof(double *));
// Perform SAXPY on 1M element
lege_inte2<<<(N+255)/256, 256>>>(N,1.0, -3.0, 3.0, d_dresult); /*This kerlnel works OK*/
//lege_inte2_shared<<<(N+255)/256, 256>>>(N, -3.0, 3.0, d_dresult); /*why this one does not work? */
cudaMemcpy(dresult, d_dresult, N*sizeof(double), cudaMemcpyDeviceToHost);
double maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = max(maxError, abs(dresult[i]-20.03574985));
printf("Max error: %f in %i quadratures \n", maxError, N);
printf("integral: %f \n" ,dresult[0]);
cudaFree(d_dresult);
cudaFree(d_droot_temp);
cudaFree(d_dweight_temp);
}
(我无法保证结果。)
现在,关于这个问题:
更重要的是,为了在设备上提供更多可用内存,是否可以将根和权重刻录到设备内存的某个恒定部分?
由于您d_dweight
和d_droot
的访问权限似乎是统一的:
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
然后它may be useful to define these作为__constant__
内存空间变量。当warp中的每个线程在常量内存中请求相同的值(相同位置)时,常量内存访问是最佳的。但是,__constant__
内存不能动态分配,将指针(仅)存储在常量内存中是没有意义的;这并没有提供常量缓存机制的任何好处。
因此,对代码的以下进一步修改演示了如何将这些值存储在__constant__
内存中,但它需要静态分配。此外,这并不是真正的“保存”#34;任何设备内存。无论您使用cudaMalloc
动态分配,静态分配__device__
变量,还是通过__constant__
变量定义(也是静态分配),所有这些方法都需要全局内存支持存储在设备内存(板载DRAM)中。
代码演示可能的常量内存使用情况:
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#define N_nodes 5
__constant__ double d_droot[N_nodes], d_dweight[N_nodes];
__device__ __host__
double f(double alpha,double x)
{
/*function to be integrated via gauss-legendre quadrature. */
return exp(alpha*x);
}
__global__
void lege_inte2(int n, double alpha, double a, double b, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
lroots[]: roots for the quadrature
weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
}
}
__global__
void lege_inte2_shared(int n,double alpha, double a, double b, double *result)
{
/*
Parameters:
n: Total number of quadratures
a: Upper integration limit
b: Lower integration limit
d_root[]: roots for the quadrature
d_weight[]: weights for the quadrature
result[]: allocate the results for N quadratures.
*/
double c1 = (b - a) / 2, c2 = (b + a) / 2, sum = 0;
int dummy;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
result[i] = 0.0;
for (dummy = 0; dummy < 5; dummy++)
{
result[i] += d_dweight[dummy] * f(alpha,c1 * d_droot[dummy] + c2)*c1;
printf(" Vale: %f \n", d_dweight[dummy]);
}
}
}
int main(void)
{
int N = 1<<23;
// int N_nodes = 5;
double *droot, *dweight, *dresult, *d_dresult;
/*double version in host*/
droot =(double*)malloc(N_nodes*sizeof(double));
dweight =(double*)malloc(N_nodes*sizeof(double));
dresult =(double*)malloc(N*sizeof(double)); /*will recibe the results of N quadratures!*/
/*double version in device*/
cudaMalloc(&d_dresult, N*sizeof(double)); /*results for N quadratures will be contained here*/
/*double version of the roots and weights*/
droot[0] = 0.90618;
droot[1] = 0.538469;
droot[2] = 0.0;
droot[3] = -0.538469;
droot[4] = -0.90618;
dweight[0] = 0.236927;
dweight[1] = 0.478629;
dweight[2] = 0.568889;
dweight[3] = 0.478629;
dweight[4] = 0.236927;
/*double copy host-> device*/
cudaMemcpyToSymbol(d_droot, droot, N_nodes*sizeof(double));
cudaMemcpyToSymbol(d_dweight, dweight, N_nodes*sizeof(double));
// Perform SAXPY on 1M element
lege_inte2<<<(N+255)/256, 256>>>(N,1.0, -3.0, 3.0, d_dresult); /*This kerlnel works OK*/
//lege_inte2_shared<<<(N+255)/256, 256>>>(N, -3.0, 3.0, d_dresult); /*why this one does not work? */
cudaMemcpy(dresult, d_dresult, N*sizeof(double), cudaMemcpyDeviceToHost);
double maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = max(maxError, abs(dresult[i]-20.03574985));
printf("Max error: %f in %i quadratures \n", maxError, N);
printf("integral: %f \n" ,dresult[0]);
cudaFree(d_dresult);
}