我们如何在[-1, 1]
以外的时间间隔内使用NumPy包numpy.polynomial.legendre.leggauss
?
以下示例在[-1, 1]
间隔内将scipy.integrate.quad
与Gauss-Legendre方法进行比较。
import numpy as np
from scipy import integrate
# Define function and interval
a = -1.
b = 1.
f = lambda x: np.cos(x)
# Gauss-Legendre (default interval is [-1, 1])
deg = 6
x, w = np.polynomial.legendre.leggauss(deg)
gauss = sum(w * f(x))
# For comparison
quad, quad_err = integrate.quad(f, a, b)
print 'The QUADPACK solution: {0:.12} with error: {1:.12}'.format(quad, quad_err)
print 'Gauss-Legendre solution: {0:.12}'.format(gauss)
print 'Difference between QUADPACK and Gauss-Legendre: ', abs(gauss - quad)
输出:
The QUADPACK solution: 1.68294196962 with error: 1.86844092378e-14
Gauss-Legendre solution: 1.68294196961
Difference between QUADPACK and Gauss-Legendre: 1.51301193796e-12
答案 0 :(得分:6)
到change the interval,使用比如
将x值从[-1,1]转换为[a,b]gauss = sum(w * f(t)) * 0.5*(b - a)
然后将正交公式缩放为(b-a)/ 2:
import numpy as np
from scipy import integrate
# Define function and interval
a = 0.0
b = np.pi/2
f = lambda x: np.cos(x)
# Gauss-Legendre (default interval is [-1, 1])
deg = 6
x, w = np.polynomial.legendre.leggauss(deg)
# Translate x values from the interval [-1, 1] to [a, b]
t = 0.5*(x + 1)*(b - a) + a
gauss = sum(w * f(t)) * 0.5*(b - a)
# For comparison
quad, quad_err = integrate.quad(f, a, b)
print 'The QUADPACK solution: {0:.12} with error: {1:.12}'.format(quad, quad_err)
print 'Gauss-Legendre solution: {0:.12}'.format(gauss)
print 'Difference between QUADPACK and Gauss-Legendre: ', abs(gauss - quad)
以下是您示例的修改版本:
var date = new Date();
var str = ["Sunday", "mon", "tues", "wed", "thurs", "fri", "sat", "sun"][date.getDay()];
str += ", " + ["jan", "feb", "mar", "apr", "may", "june", "jul", "aug", "sep", "oct", "November", "dec"][date.getMonth()];
str += " " + date.getDate();
str += ", " + date.getFullYear();
console.log(str);
打印:
The QUADPACK solution: 1.0 with error: 1.11022302463e-14 Gauss-Legendre solution: 1.0 Difference between QUADPACK and Gauss-Legendre: 4.62963001269e-14
答案 1 :(得分:0)
quadpy(我的一个小项目)作为一个更简单的语法:
import numpy
import quadpy
out = quadpy.line_segment.integrate(
numpy.cos,
[1.1, 1.2], # the interval
quadpy.line_segment.GaussLegendre(4)
)