我有点(例如,lat,lon对的细胞塔位置),我需要得到它们形成的Voronoi细胞的多边形。
from scipy.spatial import Voronoi
tower = [[ 24.686 , 46.7081],
[ 24.686 , 46.7081],
[ 24.686 , 46.7081]]
c = Voronoi(towers)
现在,我需要为每个单元格的lat,lon坐标获取多边形边界(以及该多边形所包围的质心)。我需要这个Voronoi也是有限的。意味着边界不会进入无限远,而是在边界框内。
答案 0 :(得分:22)
给定一个矩形边界框,我的第一个想法是在这个边界框和由scipy.spatial.Voronoi
产生的Voronoï图之间定义一种交叉运算。一个想法不一定很好,因为这需要编码计算几何的大量基本函数。
然而,这是我想到的第二个想法(黑客?):计算平面中一组n
点的Voronoï图的算法的时间复杂度为O(n ln(n))
。如何添加点来限制初始点的Voronoï单元格位于边界框中?
一张图片值得一个伟大的演讲:
我在这做了什么?这很简单!初始点(蓝色)位于[0.0, 1.0] x [0.0, 1.0]
。然后我根据[-1.0, 0.0] x [0.0, 1.0]
(边界框的左边缘)通过反射对称得到左边的点(蓝色)(即x = 0.0
)。根据{{1}},x = 1.0
和y = 0.0
(边界框的其他边缘)的反射对称性,我得到了我需要完成工作的所有点(蓝色)。
然后我跑y = 1.0
。上图描绘了生成的Voronoï图(我使用scipy.spatial.voronoi_plot_2d
)。
下一步该怎么做?只需根据边界框过滤点,边或面。并根据众所周知的公式计算每个面部的质心来计算centroid of polygon。这是结果的图像(质心是红色的):
大!它似乎工作。如果在一次迭代后我尝试在质心(红色)而不是初始点(蓝色)上重新运行算法怎么办?如果我一次又一次地尝试怎么办?
第2步
第10步
第25步
酷! Voronoï细胞倾向于最小化它们的能量 ......
scipy.spatial.Voronoi
答案 1 :(得分:1)
在使用scipy的voronoi函数和创建CVD时,我遇到了很多麻烦,因此这些精彩的帖子和评论极大地帮助了我。作为一名编程新手,我试图理解Flabetvvibes答案中的代码,并且我将分享我对它如何与Energya以及我自己的修改一起工作的解释。我还在此答案的底部完整地发布了我的代码版本
import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys
import copy
eps = sys.float_info.epsilon
# Returns a new np.array of towers that within the bounding_box
def in_box(towers, bounding_box):
return np.logical_and(np.logical_and(bounding_box[0] <= towers[:, 0],
towers[:, 0] <= bounding_box[1]),
np.logical_and(bounding_box[2] <= towers[:, 1],
towers[:, 1] <= bounding_box[3]))
in_box函数使用numpy的logical_and方法返回一个布尔数组,该布尔数组表示塔中边界框内的坐标。
# Generates a bounded vornoi diagram with finite regions in the bounding box
def bounded_voronoi(towers, bounding_box):
# Select towers inside the bounding box
i = in_box(towers, bounding_box)
# Mirror points left, right, above, and under to provide finite regions for the
# edge regions of the bounding box
points_center = towers[i, :]
points_left = np.copy(points_center)
points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])
points_right = np.copy(points_center)
points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])
points_down = np.copy(points_center)
points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])
points_up = np.copy(points_center)
points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])
points = np.append(points_center,
np.append(np.append(points_left,
points_right,
axis=0),
np.append(points_down,
points_up,
axis=0),
axis=0),
axis=0)
Flabetvvibes镜像这些点,以使边界框内边缘的区域有限。 Scipy的voronoi方法针对未定义的顶点返回-1,因此对这些点进行镜像可以使边界框内的所有区域都是有限的,并且所有无限区域都位于边界框外的镜像区域中,稍后将丢弃。>
# Compute Voronoi
vor = sp.spatial.Voronoi(points)
# creates a new attibute for points that form the diagram within the region
vor.filtered_points = points_center
# grabs the first fifth of the regions, which are the original regions
vor.filtered_regions = np.array(vor.regions)[vor.point_region[:vor.npoints//5]]
return vor
bounded_voronoi方法的最后这一点调用scipy的voronoi函数,并为边界框中的已过滤点和区域添加新属性。 Energya建议删除Flabetvvibe的代码,该代码使用一个衬板手动找到边界框内的所有有限区域,该衬板获得区域的前五分之一,这是原始输入以及组成边界框的点。
def generate_CVD(points, iterations, bounding_box):
p = copy.copy(points)
for i in range(iterations):
vor = bounded_voronoi(p, bounding_box)
centroids = []
for region in vor.filtered_regions:
# grabs vertices for the region and adds a duplicate
# of the first one to the end
vertices = vor.vertices[region + [region[0]], :]
centroid = centroid_region(vertices)
centroids.append(list(centroid[0, :]))
p = np.array(centroids)
return bounded_voronoi(p, bounding_box)
我采用了Flabetvvibe的代码,该代码执行了loyd算法的迭代,并将其形成一种易于使用的方法。对于每次迭代,将调用先前的bounded_voronoi函数,然后为每个单元找到质心,它们将成为下一次迭代的新点集。 vertices = vor.vertices[region + [region[0]], :]
只需获取当前区域的所有顶点,并将第一个顶点复制到末尾,以使第一个和最后一个顶点用于计算质心相同。
感谢Flabetvvibes和Energya。您的帖子/答案教会了我如何更好地使用scipy的voronoi方法而不是其文档。我还将代码作为一个单独的代码发布在其他任何要复制/粘贴的代码下面。
import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys
import copy
eps = sys.float_info.epsilon
# Returns a new np.array of towers that within the bounding_box
def in_box(towers, bounding_box):
return np.logical_and(np.logical_and(bounding_box[0] <= towers[:, 0],
towers[:, 0] <= bounding_box[1]),
np.logical_and(bounding_box[2] <= towers[:, 1],
towers[:, 1] <= bounding_box[3]))
# Generates a bounded vornoi diagram with finite regions
def bounded_voronoi(towers, bounding_box):
# Select towers inside the bounding box
i = in_box(towers, bounding_box)
# Mirror points left, right, above, and under to provide finite regions for the edge regions of the bounding box
points_center = towers[i, :]
points_left = np.copy(points_center)
points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])
points_right = np.copy(points_center)
points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])
points_down = np.copy(points_center)
points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])
points_up = np.copy(points_center)
points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])
points = np.append(points_center,
np.append(np.append(points_left,
points_right,
axis=0),
np.append(points_down,
points_up,
axis=0),
axis=0),
axis=0)
# Compute Voronoi
vor = sp.spatial.Voronoi(points)
vor.filtered_points = points_center # creates a new attibute for points that form the diagram within the region
vor.filtered_regions = np.array(vor.regions)[vor.point_region[:vor.npoints//5]] # grabs the first fifth of the regions, which are the original regions
return vor
# Finds the centroid of a region. First and last point should be the same.
def centroid_region(vertices):
# Polygon's signed area
A = 0
# Centroid's x
C_x = 0
# Centroid's y
C_y = 0
for i in range(0, len(vertices) - 1):
s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
A = A + s
C_x = C_x + (vertices[i, 0] + vertices[i + 1, 0]) * s
C_y = C_y + (vertices[i, 1] + vertices[i + 1, 1]) * s
A = 0.5 * A
C_x = (1.0 / (6.0 * A)) * C_x
C_y = (1.0 / (6.0 * A)) * C_y
return np.array([[C_x, C_y]])
# Performs x iterations of loyd's algorithm to calculate a centroidal vornoi diagram
def generate_CVD(points, iterations, bounding_box):
p = copy.copy(points)
for i in range(iterations):
vor = bounded_voronoi(p, bounding_box)
centroids = []
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :] # grabs vertices for the region and adds a duplicate of the first one to the end
centroid = centroid_region(vertices)
centroids.append(list(centroid[0, :]))
p = np.array(centroids)
return bounded_voronoi(p, bounding_box)
# returns a pyplot of given voronoi data
def plot_vornoi_diagram(vor, bounding_box, show_figure):
# Initializes pyplot stuff
fig = pl.figure()
ax = fig.gca()
# Plot initial points
ax.plot(vor.filtered_points[:, 0], vor.filtered_points[:, 1], 'b.')
# Plot ridges points
for region in vor.filtered_regions:
vertices = vor.vertices[region, :]
ax.plot(vertices[:, 0], vertices[:, 1], 'go')
# Plot ridges
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :]
ax.plot(vertices[:, 0], vertices[:, 1], 'k-')
# stores references to numbers for setting axes limits
margin_percent = .1
width = bounding_box[1]-bounding_box[0]
height = bounding_box[3]-bounding_box[2]
ax.set_xlim([bounding_box[0]-width*margin_percent, bounding_box[1]+width*margin_percent])
ax.set_ylim([bounding_box[2]-height*margin_percent, bounding_box[3]+height*margin_percent])
if show_figure:
pl.show()
return fig