Python pi计算?

时间:2015-02-02 19:13:03

标签: python algorithm pi

我是一名蟒蛇初学者,我想计算pi。我尝试使用Chudnovsky算法,因为我听说它比其他算法更快。

这是我的代码:

from math import factorial
from decimal import Decimal, getcontext

getcontext().prec=100

def calc(n):
    t= Decimal(0)
    pi = Decimal(0)
    deno= Decimal(0)
    k = 0
    for k in range(n):
        t = ((-1)**k)*(factorial(6*k))*(13591409+545140134*k)
        deno = factorial(3*k)*(factorial(k)**3)*(640320**(3*k))
        pi += Decimal(t)/Decimal(deno)                                   
    pi = pi * Decimal(12)/Decimal(640320**(1.5))
    pi = 1/pi
    return pi

print calc(25)

由于某种原因,与可接受的值相比,此代码产生pi的vakue,最多只有15位小数。我试图通过提高精度值来解决这个问题;这会增加位数,但只有前15位仍然准确。我尝试改变计算算法的方式,但它也没有用。所以我的问题是,是否可以对此代码执行某些操作以使其更准确或者我是否必须使用其他算法?我将非常感谢您的帮助,因为我不会知道如何在python中运行如此多的数字。我希望能够控制程序确定和显示的(正确)数字的数量 - 无论是10,100,1000等。

3 个答案:

答案 0 :(得分:18)

这一行似乎正在失去精确度:

pi = pi * Decimal(12)/Decimal(640320**(1.5))

尝试使用:

pi = pi * Decimal(12)/Decimal(640320**Decimal(1.5))

发生这种情况是因为即使Python可以处理任意比例整数,但浮点数也不能很好。

<强>加成

使用其他算法(BBP formula)的单行实现:

from decimal import Decimal, getcontext
getcontext().prec=100
print sum(1/Decimal(16)**k * 
          (Decimal(4)/(8*k+1) - 
           Decimal(2)/(8*k+4) - 
           Decimal(1)/(8*k+5) -
           Decimal(1)/(8*k+6)) for k in range(100))

答案 1 :(得分:8)

对于那些来到这里的人来说,只是为了获得一个现成的解决方案来获得Python的任意精度:

import decimal

def pi():
    """
    Compute Pi to the current precision.

    Examples
    --------
    >>> print(pi())
    3.141592653589793238462643383

    Notes
    -----
    Taken from https://docs.python.org/3/library/decimal.html#recipes
    """
    decimal.getcontext().prec += 2  # extra digits for intermediate steps
    three = decimal.Decimal(3)      # substitute "three=3.0" for regular floats
    lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
    while s != lasts:
        lasts = s
        n, na = n + na, na + 8
        d, da = d + da, da + 32
        t = (t * n) / d
        s += t
    decimal.getcontext().prec -= 2
    return +s               # unary plus applies the new precision

decimal.getcontext().prec = 1000
pi = pi()

答案 2 :(得分:0)

from decimal import *

#Sets decimal to 25 digits of precision
getcontext().prec = 25

def factorial(n):
    if n<1:
        return 1
    else:
        return n * factorial(n-1)

def plouffBig(n): #http://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula
    pi = Decimal(0)
    k = 0
    while k < n:
        pi += (Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))
        k += 1
    return pi

def bellardBig(n): #http://en.wikipedia.org/wiki/Bellard%27s_formula
    pi = Decimal(0)
    k = 0
    while k < n:
        pi += (Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1) + Decimal(1)/(10*k+9) - Decimal(64)/(10*k+3) - Decimal(32)/(4*k+1) - Decimal(4)/(10*k+5) - Decimal(4)/(10*k+7) -Decimal(1)/(4*k+3))
        k += 1
    pi = pi * 1/(2**6)
    return pi

def chudnovskyBig(n): #http://en.wikipedia.org/wiki/Chudnovsky_algorithm
    pi = Decimal(0)
    k = 0
    while k < n:
        pi += (Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))* (13591409+545140134*k)/(640320**(3*k)))
        k += 1
    pi = pi * Decimal(10005).sqrt()/4270934400
    pi = pi**(-1)
    return pi
print "\t\t\t Plouff \t\t Bellard \t\t\t Chudnovsky"
for i in xrange(1,20):
    print "Iteration number ",i, " ", plouffBig(i), " " , bellardBig(i)," ", chudnovskyBig(i)