用多线程计算Pi(无加速度 - 做什么)

时间:2013-06-04 20:27:21

标签: python multithreading pi

我正在尝试使用Ramanujan的一个公式http://en.wikipedia.org/wiki/Approximations_of_%CF%80#20th_century在Python上以任意精度计算pi。它基本上需要大量因子和高精度浮点数除法。

我使用多个线程来划分无限级数计算,方法是给每个线程赋予所有具有一定模数的成员除以线程数。所以如果你有3个线程,总和应该像这样划分     线程1 ---> 1,4,7 ......成员     线程2 ----> 2,5,8 ...     线程3 ----> 3,6,9 ......

到目前为止,这是我的代码:

from decimal   import *
from math      import sqrt, ceil
from time      import clock
from threading import *
import argparse

memoizedFactorials = []
memoizedFactorials.append( 1 )
memoizedFactorials.append( 1 )

class Accumulator:
    def __init__( self ):
        self._sum = Decimal( 0 )

    def accumulate( self, decimal ):
        self._sum += decimal

    def sum( self ):
        return self._sum

def factorial( k ):
    if k < 2: return 1
    elif len(memoizedFactorials) <= k:
        product = memoizedFactorials[ - 1 ] #last element 
        for i in range ( len(memoizedFactorials), k+1 ):
            product *= i;
            memoizedFactorials.append(product)

    return memoizedFactorials[ k ]

class Worker(Thread):
    def __init__( self, startIndex, step, precision, accumulator ):
        Thread.__init__( self, name = ("Thread - {0}".format( startIndex ) ) )
        self._startIndex = startIndex
        self._step = step
        self._precision = precision
        self._accumulator = accumulator

    def run( self ):
        sum = Decimal( 0 )
        result = Decimal( 1 )
        zero = Decimal( 0 )

        delta = Decimal(1)/( Decimal(10)**self._precision + 1 )
        #print "Delta - {0}".format( delta ) 
        i = self._startIndex
        while( result - zero > delta ):
            numerator = Decimal(factorial(4 * i)*(1103 + 26390 * i))
            denominator = Decimal((factorial(i)**4)*(396**(4*i)))
            result =  numerator / denominator
            print "Thread - {2} --- Iteration - {0:3} --->{1:3}".format( i, result, self._startIndex )
            sum += result
            i += self._step

        self._accumulator.accumulate( sum ) 
        print 

def main( args ):
    numberOfDigits = args.numberOfDigits;
    getcontext().prec = numberOfDigits + 8
    zero = Decimal(1) / Decimal( 10**( numberOfDigits + 1 ) )

    start = clock()
    accumulator = Accumulator()

    threadsCount = args.numberOfThreads;
    threadPool = []
    for i in range(0, threadsCount ):
        worker = Worker( i, threadsCount, numberOfDigits, accumulator )
        worker.start()
        threadPool.append( worker )

    for worker in threadPool:
        worker.join()

    sum = accumulator.sum();

    rootOfTwo = Decimal(2).sqrt()

    result = Decimal( 9801 ) / ( Decimal( 2 ) * rootOfTwo * sum ) 
    end = clock();

    delta = end - start;

    print result;
    print ("Took it {0} second to finish".format( delta ) )

    #testing the results
    #realPiFile = open("pi.txt");
    #myPi = str(result)
    #realPi = realPiFile.read( len(myPi) - 1 )

    #if ( myPi[:-1] != realPi ):
    #    print "Answer not correct!"
    #    print "My pi   - {0}".format(myPi)
    #    print "Real pi - {0}".format(realPi)

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description = 'Calculate Pi at with arbitrary precision')
    parser.add_argument('-p',            dest = 'numberOfDigits',  default=20, type = int, help ='Number of digits in pi ')
    parser.add_argument('-t', '--tasks', dest = 'numberOfThreads', default=1,  type = int, help ='Number of tasks( threads )')
    parser.add_argument('-o',            dest = 'outputFileName',  type = str,             help ='Connect to VCS testing servers')
    parser.add_argument('-q', '--quet',  dest = 'quetMode'      ,  action='store_true',    help ='Run in quet mode')

    args = parser.parse_args()

    print args
    main(args)
    a = raw_input("Press any key to continue...")

在使用多个线程时,我担心的是时间非常小或没有加速度。例如pi的1000位数:     1个线程 - &gt; 0.68秒     2个主题 - &gt; 0.74秒     4个主题 - &gt; 0.75秒     10个主题 - &gt; 0.96秒

您对如何减少时间有任何想法吗?我在任务管理器上看到,当使用四个线程时,我的两个内核都会100%参与其中。但是时间似乎是一样的。

PS:这是家庭作业,所以我不能使用其他公式。 PSS:我正在使用python 2.7

感谢:)

3 个答案:

答案 0 :(得分:5)

Python有一个GIL(Global Interpreter Lock),它可以防止多个线程同时执行python代码,即你无法使用多个线程获得CPU绑定任务的加速。您必须使用多个流程。

答案 1 :(得分:3)

由于GIL(全局解释锁定),线程不会加快速度。使用multiprocessing进行此类任务。它的用法与线程非常相似。

答案 2 :(得分:2)

相反,要通过系列和所有那些令人讨厌的因子来蛮力,你一定要学习二进制分裂算法。

http://numbers.computation.free.fr/Constants/Algorithms/splitting.html

这家伙已经为你做了工作。它具有应用于Chudnovsky公式的二元分裂结构的python实现:
http://www.craig-wood.com/nick/articles/pi-chudnovsky/

这种结构的主要优点是在计算序列时不需要划分,阶乘和任何浮点计算。然后在分子和分母之间执行单个,最终,超大质量的除法。实际上我不知道如何多线程,但这是一个开始。