基本上来自不同模块的导入越多,这些多处理任务所用的时间越长,即使没有使用任何模块功能。每个流程都必须重新导入所有内容吗?发生了什么事?
import time
time1 = time.time()
import multiprocessing as mp
import numpy as np # Random imports (not used)
import PIL
import PySide
import pandas
# print time.time() - time1 # here this prints 0.0
class Multi(object):
def __init__(self, queue):
self.q = queue
def run(self, a):
p = mp.Process(target=f, args=(a, q))
p.start()
print self.q.get()
p.join()
class MultiPool(object):
def __init__(self, N):
self.N = N
self.pool = mp.Pool(processes = self.N)
def run(self):
result = self.pool.map_async(f1, ((i,) for i in range(self.N)))
print result.get()
def f(a, q):
for i in range(10000000):
b = i
q.put(b)
def f1(a):
for i in range(10000000):
b = i
return b
if __name__ == '__main__':
q = mp.Queue()
e = Multi(q)
# time1 = time.time()
print f1(0)
print time.time() - time1
time1 = time.time()
e.run('123')
print time.time() - time1
time1 = time.time()
mpool = MultiPool(2)
mpool.run()
print time.time() - time1
# Output with random imports:
>9999999
>0.246000051498
>9999999
>0.693000078201
>[9999999, 9999999]
>0.720999956131
# Output without imports:
>9999999
>0.246000051498
>9999999
>0.315999984741
>[9999999, 9999999]
>0.313999891281
答案 0 :(得分:1)
是multiprocessing
必须导入任何进程中的所有内容,因为进程(新应用程序)而非线程。
您将通过脚本衡量的是方法执行的成本加上流程创建的成本。您可以测量导入成本,并且它们恰好在import
语句所在的位置执行。