现在我一直在用OpenCV进行图像分析,我正在尝试做的是识别车道分界线,我做的是以下内容:
1.I receive a image,
2. Then transform it to grayscale
3.I apply the GaussianBlur
4.After I place me in the ROI
5.I apply the canny
6.then I look for lines with hough transform Lines
7.Draw the lines obtained from hough
但我遇到的问题是: 它不识别任何分界线,也不识别黄线。
我希望能帮助我解决这个问题,你会感谢很多。 然后我把代码
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <vector>
#include <stdio.h>
#include "linefinder.h"
using namespace cv;
int main(int argc, char* argv[]) {
int houghVote = 200;
string arg = argv[1];
Mat image;
image = imread(argv[1]);
Mat gray;
cvtColor(image,gray,CV_RGB2GRAY);
GaussianBlur( gray, gray, Size( 5, 5 ), 0, 0 );
vector<string> codes;
Mat corners;
findDataMatrix(gray, codes, corners);
drawDataMatrixCodes(image, codes, corners);
//Mat image = imread("");
//Rect region_of_interest = Rect(x, y, w, h);
//Mat image_roi = image(region_of_interest);
std::cout << image.cols << "\n";
std::cout << image.rows << "\n";
Rect roi(0,290,640,190);// set the ROI for the image
Mat imgROI = image(roi);
// Display the image
imwrite("original.bmp", imgROI);
// Canny algorithm
Mat contours;
Canny(imgROI, contours, 120, 300, 3);
imwrite("canny.bmp", contours);
Mat contoursInv;
threshold(contours,contoursInv,128,255,THRESH_BINARY_INV);
// Display Canny image
imwrite("contours.bmp", contoursInv);
/*
Hough tranform for line detection with feedback
Increase by 25 for the next frame if we found some lines.
This is so we don't miss other lines that may crop up in the next frame
but at the same time we don't want to start the feed back loop from scratch.
*/
std::vector<Vec2f> lines;
if (houghVote < 1 or lines.size() > 2){ // we lost all lines. reset
houghVote = 200;
}else{
houghVote += 25;
}
while(lines.size() < 5 && houghVote > 0){
HoughLines(contours,lines,1,PI/180, houghVote);
houghVote -= 5;
}
std::cout << houghVote << "\n";
Mat result(imgROI.size(),CV_8U,Scalar(255));
imgROI.copyTo(result);
// Draw the limes
std::vector<Vec2f>::const_iterator it= lines.begin();
Mat hough(imgROI.size(),CV_8U,Scalar(0));
while (it!=lines.end()) {
float rho= (*it)[0]; // first element is distance rho
float theta= (*it)[1]; // second element is angle theta
if ( theta > 0.09 && theta < 1.48 || theta < 3.14 && theta > 1.66 ) {
// filter to remove vertical and horizontal lines
// point of intersection of the line with first row
Point pt1(rho/cos(theta),0);
// point of intersection of the line with last row
Point pt2((rho-result.rows*sin(theta))/cos(theta),result.rows);
// draw a white line
line( result, pt1, pt2, Scalar(255), 8);
line( hough, pt1, pt2, Scalar(255), 8);
}
++it;
}
// Display the detected line image
std::cout << "line image:"<< "\n";
namedWindow("Detected Lines with Hough");
imwrite("hough.bmp", result);
// Create LineFinder instance
LineFinder ld;
// Set probabilistic Hough parameters
ld.setLineLengthAndGap(60,10);
ld.setMinVote(4);
// Detect lines
std::vector<Vec4i> li= ld.findLines(contours);
Mat houghP(imgROI.size(),CV_8U,Scalar(0));
ld.setShift(0);
ld.drawDetectedLines(houghP);
std::cout << "First Hough" << "\n";
imwrite("houghP.bmp", houghP);
// bitwise AND of the two hough images
bitwise_and(houghP,hough,houghP);
Mat houghPinv(imgROI.size(),CV_8U,Scalar(0));
Mat dst(imgROI.size(),CV_8U,Scalar(0));
threshold(houghP,houghPinv,150,255,THRESH_BINARY_INV); // threshold and invert to black lines
namedWindow("Detected Lines with Bitwise");
imshow("Detected Lines with Bitwise", houghPinv);
Canny(houghPinv,contours,100,350);
li= ld.findLines(contours);
// Display Canny image
imwrite("contours.bmp", contoursInv);
// Set probabilistic Hough parameters
ld.setLineLengthAndGap(5,2);
ld.setMinVote(1);
ld.setShift(image.cols/3);
ld.drawDetectedLines(image);
std::stringstream stream;
stream << "Lines Segments: " << lines.size();
putText(image, stream.str(), Point(10,image.rows-10), 2, 0.8, Scalar(0,0,255),0);
imwrite("processed.bmp", image);
char key = (char) waitKey(10);
lines.clear();
}
以下是输入图像:
在这里,我展示了两张识别白线的照片和另一张不识别黄线的照片,我需要的是识别分界线,因为我监控了泳道,但对我来说很复杂,而且它无法识别所有分界线的存在,我希望能帮助我,因为我诚实地尝试了一切,但我没有取得好成绩。
答案 0 :(得分:0)
我认为这是因为你正在对概率性霍夫和常规霍夫变换进行逐步增加。这意味着输出的图像将仅包含出现在这两种变换中的线条。我很确定在常规变换中没有检测到线,但是在概率的霍夫输出中检测到线。你最好的办法是分别输出转换和调试。我正在做一个类似的项目,我想你可以包括一个单独的ROI,以排除按位添加,并且该区域将沿着车道标记的中心。