我正在尝试为具有简单数学运算符(+, - ,*,/和括号)的给定字符串生成语法树。 给出字符串“1 + 2 * 3”:
http://img248.imageshack.us/img248/3213/misc9928.png
它应该返回一个这样的数组:
["+",
[1,
["*",
[2,3]
]
]
]
我做了一个函数来改变[1,“+”,2,“*”,3]中的“1 + 2 * 3”。
问题是:我不知道优先考虑某些操作。
我的代码是:
function isNumber(ch){
switch (ch) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case '.':
return true;
break;
default:
return false;
break;
}
}
function generateSyntaxTree(text){
if (typeof text != 'string') return [];
var code = text.replace(new RegExp("[ \t\r\n\v\f]", "gm"), "");
var codeArray = [];
var syntaxTree = [];
// Put it in its on scope
(function(){
var lastPos = 0;
var wasNum = false;
for (var i = 0; i < code.length; i++) {
var cChar = code[i];
if (isNumber(cChar)) {
if (!wasNum) {
if (i != 0) {
codeArray.push(code.slice(lastPos, i));
}
lastPos = i;
wasNum = true;
}
} else {
if (wasNum) {
var n = Number(code.slice(lastPos, i));
if (isNaN(n)) {
throw new Error("Invalid Number");
return [];
} else {
codeArray.push(n);
}
wasNum = false;
lastPos = i;
}
}
}
if (wasNum) {
var n = Number(code.slice(lastPos, code.length));
if (isNaN(n)) {
throw new Error("Invalid Number");
return [];
} else {
codeArray.push(n);
}
}
})();
// At this moment, codeArray = [1,"+",2,"*",3]
return syntaxTree;
}
alert('Returned: ' + generateSyntaxTree("1 + 2 * 3"));
答案 0 :(得分:5)
自上而下解析器的方法,如果不使用FLEX / BISON或任何其他类似的包,首先要编写一个可以解析输入并提供令牌的tokenizer。
基本上你需要一个提供getNextToken,peekNextToken和skipNextToken的标记器。
然后使用这种结构向下工作。
// parser.js
var input, currToken, pos;
var TOK_OPERATOR = 1;
var TOK_NUMBER = 2;
var TOK_EOF = 3;
function nextToken() {
var c, tok = {};
while(pos < input.length) {
c = input.charAt(pos++);
switch(c) {
case '+':
case '-':
case '*':
case '/':
case '(':
case ')':
tok.op = c;
tok.type = TOK_OPERATOR;
return tok;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
tok.value = c;
tok.type = TOK_NUMBER;
return tok;
default:
throw "Unexpected character: " + c;
}
}
tok.type = TOK_EOF;
return tok;
}
function getNextToken() {
var ret;
if(currToken)
ret = currToken;
else
ret = nextToken();
currToken = undefined;
return ret;
}
function peekNextToken() {
if(!currToken)
currToken = nextToken();
return currToken;
}
function skipNextToken() {
if(!currToken)
currToken = nextToken();
currToken = undefined;
}
function parseString(str) {
input = str;
pos = 0;
return expression();
}
function expression() {
return additiveExpression();
}
function additiveExpression() {
var left = multiplicativeExpression();
var tok = peekNextToken();
while(tok.type == TOK_OPERATOR && (tok.op == '+' || tok.op == '-') ) {
skipNextToken();
var node = {};
node.op = tok.op;
node.left = left;
node.right = multiplicativeExpression();
left = node;
tok = peekNextToken();
}
return left;
}
function multiplicativeExpression() {
var left = primaryExpression();
var tok = peekNextToken();
while(tok.type == TOK_OPERATOR && (tok.op == '*' || tok.op == '/') ) {
skipNextToken();
var node = {};
node.op = tok.op;
node.left = left;
node.right = primaryExpression();
left = node;
tok = peekNextToken();
}
return left;
}
function primaryExpression() {
var tok = peekNextToken();
if(tok.type == TOK_NUMBER) {
skipNextToken();
node = {};
node.value = tok.value;
return node;
}
else
if(tok.type == TOK_OPERATOR && tok.op == '(') {
skipNextToken();
var node = expression(); // The beauty of recursion
tok = getNextToken();
if(tok.type != TOK_OPERATOR || tok.op != ')')
throw "Error ) expected";
return node
}
else
throw "Error " + tok + " not exptected";
}
正如您所看到的,您首先请求权限最小的操作,这需要下一个更高权限的操作作为其左右术语,依此类推。一元运算符的结构略有不同。当遇到括号时,整洁的事情就是最后的递归。
这是一个演示页面,它使用解析器并呈现解析树(包含它的代码......)
<html>
<head>
<title>tree</title>
<script src="parser.js"></script>
</head>
<body onload="testParser()">
<script>
function createTreeNode(x, y, val, color) {
var node = document.createElement("div");
node.style.position = "absolute";
node.style.left = "" + x;
node.style.top = "" + y;
node.style.border= "solid";
node.style.borderWidth= 1;
node.style.backgroundColor= color;
node.appendChild(document.createTextNode(val));
return node;
};
var yStep = 24;
var width = 800;
var height = 600;
var RED = "#ffc0c0";
var BLUE = "#c0c0ff";
container = document.createElement("div");
container.style.width = width;
container.style.height = height;
container.style.border = "solid";
document.body.appendChild(container);
var svgNS = "http://www.w3.org/2000/svg";
function renderLink(x1, y1, x2, y2)
{
var left = Math.min(x1,x2);
var top = Math.min(y1,y2);
var width = 1+Math.abs(x2-x1);
var height = 1+Math.abs(y2-y1);
var svg = document.createElementNS(svgNS, "svg");
svg.setAttribute("x", left);
svg.setAttribute("y", top);
svg.setAttribute("width", width );
svg.setAttribute("height", height );
var line = document.createElementNS(svgNS,"line");
line.setAttribute("x1", (x1 - left) );
line.setAttribute("x2", (x2 - left) );
line.setAttribute("y1", (y1 - top) );
line.setAttribute("y2", (y2 - top) );
line.setAttribute("stroke-width", "1");
line.setAttribute("stroke", "black");
svg.appendChild(line);
var div = document.createElement("div");
div.style.position = "absolute";
div.style.left = left;
div.style.top = top;
div.style.width = width;
div.style.height = height;
div.appendChild(svg);
container.appendChild(div);
}
function getHeight(dom) {
var h = dom.offsetHeight;
return h;
}
function getWidth(dom) {
var w = dom.offsetWidth;
return w;
}
function renderTree(x, y, node, width, height)
{
if(height < 1.5*yStep)
height = 1.5*yStep;
var val;
if(node.op) {
val = node.op;
color = BLUE;
}
else
if(node.value) {
val = node.value;
color = RED;
}
else
val = "?";
var dom = createTreeNode(x, y, val, color);
container.appendChild(dom);
var w = getWidth(dom);
var h = getHeight(dom);
var nx, ny;
var child;
if(node.left) {
nx = x - width/2;
ny = y+height;
var child = renderTree(nx, ny, node.left, width/2, height/2);
renderLink(x+w/2, y+h, nx+getWidth(child)/2, ny);
}
if(node.right) {
nx = x + width/2;
ny = y+height;
child = renderTree(nx, ny, node.right, width/2, height/2);
renderLink(x+w/2, y+h, nx+getWidth(child)/2, ny);
}
return dom;
}
var root;
function testParser()
{
var str = "1+2*5-5*(9+2)";
var exp = document.createElement("div");
exp.appendChild(document.createTextNode(str));
container.appendChild(exp);
var tree = parseString(str);
renderTree(width/2, 20, tree, width/2, 4*yStep);
}
</script>
</body>
</html>
答案 1 :(得分:1)
您是否了解过解析器背后的理论?维基百科(一如既往)有一些好文章可供阅读:
答案 2 :(得分:1)
要做的是使用像flex或ANTLR这样的解析器生成器(在谷歌搜索会找到一个适合您的语言)。
但是如果你这样做是为了好玩或者了解解析器是如何工作的,那就查看维基百科的递归下降解析器。
对于像这样的简单表达式,可以轻松地创建一个简单的递归下降解析器。您可以将语法定义为:
<expression> ::= <term> | <term> <add_op> <expression>
<term> ::= <factor> | <factor> <mul_op> <term>
<factor> ::= ( <expression> ) | <number>
<add_op> ::= + | -
<mul_op> ::= * | /
请注意,通过使<term>
的规则包含<factor>
的规则,此语法可确保所有乘法/除法运算在解析树中比任何加法/减法更低。这可确保首先评估这些操作。
答案 3 :(得分:0)
我建造了一个有趣的小计算器,并且遇到了与你相同的问题,我解决了这个问题 首先,构建语法树而不记住顺序优先级。每个节点都有一个优先级值,当评估非常量时,我会检查左边的节点:如果它的优先级较低,我会顺时针旋转树:将它带入评估并首先评估,同样为正确的节点。那我就试着再试一次。它对我来说似乎运作得很好。