我需要在插入符号中用nnet训练的回归神经网络的每个节点的权重和偏差值。是否可以将此值导出到csv?
答案 0 :(得分:2)
不确定
> library(caret)
>
> set.seed(1)
> dat <- LPH07_2(200, noiseVars = 20)
>
> set.seed(2)
> mod <- train(y ~ ., data = dat,
+ method = "nnet",
+ preProc = c("center", "scale"),
+ trControl = trainControl(method = "cv"),
+ trace = FALSE,
+ linout = TRUE)
> class(mod)
[1] "train" "train.formula"
> class(mod$finalModel)
[1] "nnet.formula" "nnet"
> coef(mod$finalModel)
b->h1 i1->h1 i2->h1 i3->h1 i4->h1
-25.4498023 -4.3103092 -6.1419006 9.9687175 18.5882001
i5->h1 i6->h1 i7->h1 i8->h1 i9->h1
-8.9435466 -7.6128415 12.1248615 10.0708980 -10.0575266
i10->h1 i11->h1 i12->h1 i13->h1 i14->h1
-8.4764064 5.9401545 -1.5913728 7.7627193 2.2499502
i15->h1 i16->h1 i17->h1 i18->h1 i19->h1
3.8339322 -15.3320699 -3.2106348 -18.1776337 -5.2383470
i20->h1 i21->h1 i22->h1 i23->h1 i24->h1
-0.4742562 1.7924703 -10.8341482 2.0669317 -10.7653807
i25->h1 i26->h1 i27->h1 i28->h1 i29->h1
25.1267101 -2.3238480 5.0903482 16.5455288 4.3883148
i30->h1 i31->h1 i32->h1 i33->h1 i34->h1
-6.6731234 -10.0256391 -15.4282063 -2.4175650 10.8461340
i35->h1 i36->h1 i37->h1 i38->h1 i39->h1
12.1522709 7.2186336 -10.0399381 -6.8036466 -3.2871834
i40->h1 b->o h1->o
16.6448920 22.2094881 -65.2759878
然后使用
out <- data.frame(value = coef(mod$finalModel),
param = names(coef(mod$finalModel)))
write.csv(out, file = "some.csv")
最高