我使用Caret Package来训练模型使用" nnet"方法。它正在工作,但我需要看到隐藏层中使用的权重。 当我们直接使用nnet函数时,这是可能的:
model<-nnet(Data[5:8], Data[4],size=10,maxit=100000,linout=T,decay=0.1)
model$wts
[1] 9.160050e-01 1.184379e+00 -1.201645e+00 1.041427e+00 -2.367287e-03 6.861753e+00 1.223522e+00 -1.875841e+01 -1.233203e-02
[10] 5.281464e-01 -1.605204e+00 1.497933e+00 -2.882815e+00 -1.511277e+01 2.732411e-01 -2.999315e+01 1.498460e-01 -9.405826e-01
[19] -2.800337e+00 9.600647e-02 1.588405e+00 -2.106175e+00 -8.807753e+00 2.762392e+01 2.091118e-01 3.265564e+01 6.516821e-01
[28] 1.304455e-01 -7.633166e+00 1.017017e-02 6.366411e+01 -2.902564e-02 1.376147e-01 -8.353788e+00 6.376588e-04 5.995577e+00
[37] 1.176301e+01 -8.569926e+00 1.971122e+01 -2.358067e-01 3.971781e+01 1.940421e-01 1.755913e-01 -5.817047e+00 1.988909e-03
[46] 1.408106e+00 -1.549250e+00 1.757245e+01 -5.760102e+01 1.001197e+00 -5.493371e+00 4.786298e+00 6.049659e+00 -1.762611e+01
[55] -9.598485e+00 -1.716196e+01 6.477683e+00 -1.971476e+01 4.468062e+00 2.125993e+01 4.683170e+01
使用插入符号包时如何看重?
mynnetfit <- train(DC ~ T+c+f+h, data = Data1, method = "nnet",
maxit = 1000, tuneGrid = my.grid, trace = T, linout = 1, trControl = ctrl)
答案 0 :(得分:0)
模型对象mynnetfit
有一个finalModel
组件,属于nnet
类。然后,您可以coef(mynnetfit$finalModel)
获取节点的权重。
例如
library(caret)
## simulate data
set.seed(1)
dat <- LPH07_2(100, 20)
mod <- train(y ~ ., data=dat, method="nnet", trace=FALSE, linout=TRUE)
coef(mod$finalModel)
b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1 i7->h1 i8->h1 i9->h1
-0.7622230 8.5760791 9.6162685 -13.0549859 5.3306854 8.1679126 3.1832575 -5.4354694 4.8410017 -6.3811887
i10->h1 i11->h1 i12->h1 i13->h1 i14->h1 i15->h1 i16->h1 i17->h1 i18->h1 i19->h1
7.0813781 3.4709351 5.6444663 4.2530566 0.6594511 0.5579828 23.5802215 5.0381758 -0.4883967 -13.0613378
i20->h1 i21->h1 i22->h1 i23->h1 i24->h1 i25->h1 i26->h1 i27->h1 i28->h1 i29->h1
11.8905272 -0.2732984 -4.5190578 -2.3095693 0.8891562 1.7922645 -0.4666446 -1.0980723 -4.7742597 -5.1603453
i30->h1 i31->h1 i32->h1 i33->h1 i34->h1 i35->h1 i36->h1 i37->h1 i38->h1 i39->h1
-0.1285864 2.2160653 0.2990097 -5.1722264 -4.8375324 1.4537326 -1.6870400 -2.1019009 1.3542151 0.7036545
i40->h1 b->o h1->o
-2.1592154 10.7700684 -27.4712736