我正在实施AND Perceptron,在确定权重和组合的偏向以使其与AND Truth表匹配时遇到困难。
这是我编写的代码:
import pandas as pd
# Set weight1, weight2, and bias
weight1 = 2.0
weight2 = -1.0
bias = -1.0
# Inputs and outputs
test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
correct_outputs = [False, False, False, True]
outputs = []
# Generate and check output
for test_input, correct_output in zip(test_inputs, correct_outputs):
linear_combination = weight1 * test_input[0] + weight2 * test_input[1] + bias
output = int(linear_combination >= 0)
is_correct_string = 'Yes' if output == correct_output else 'No'
outputs.append([test_input[0], test_input[1], linear_combination, output, is_correct_string])
# Print output
num_wrong = len([output[4] for output in outputs if output[4] == 'No'])
output_frame = pd.DataFrame(outputs, columns=['Input 1', ' Input 2', ' Linear Combination', ' Activation Output', ' Is Correct'])
if not num_wrong:
print('Nice! You got it all correct.\n')
else:
print('You got {} wrong. Keep trying!\n'.format(num_wrong))
print(output_frame.to_string(index=False))
我必须根据上述值确定权重1,权重2和偏差。当1
和0
作为输入时,我得到了一个错误的输出。
感谢您的帮助。
答案 0 :(得分:5)
系统:
w = weight (same for both inputs)
b = bias
0*w + 0*w + b <= 0
1*w + 0*w + b <= 0
1*w + 1*w + b > 0
这给你留下了
w + b <= 0
2*w + b > 0
您应该能够从那里描述可能的解决方案。
答案 1 :(得分:1)
尝试使用relu激活功能,看看能否解决您的问题
projects.deployments.update
1、1和-1.5应该起作用。
答案 2 :(得分:1)
和感知器:
weight1 = 1.0
weight2 = 1.0
bias = -2.0
或感知器:
weight1 = 1.0
weight2 = 1.0
bias = -1
没有感知器:
weight1 = 1.0
weight2 = -2.0
bias = 0
该偏差可作为调整线性方程的截距。