我需要绘制分隔线,使用单层感知器的输出,在高度和重量上将雄性与雌性基部分开。
我有data.txt文件,其中包含两个功能(身高和体重)和性别,其中0表示男性,1表示女性
即:
|---------------------|------------------|------|
| 150.5 | 5.2 | 1 |
|---------------------|------------------|------|
| 142.8 | 4.0 | 0 |
|---------------------|------------------|------|
| 150.5 | 5.2 | 1 |
|---------------------|------------------|------|
| 190 | 5.7 | 0 |
|---------------------|------------------|------|
import numpy as np
from sklearn import svm
import matplotlib.pyplot as plt
from sklearn.linear_model import perceptron
from pandas import *
import fileinput
f = fileinput.input('data.txt')
#height of females and males
X_1 = []
#weight of female and males
X_2 = []
#labels 0 males and 1 females
Y = []
for line in f:
temp = line.split(",")
if str(temp[2]) == '0\n' :
X_1.append(round(float(temp[0]),2))
X_2.append(round(float(temp[1]),2))
Y.append(0)
else:
X_1.append(round(float(temp[0]), 2))
X_2.append(round(float(temp[1]), 2))
Y.append(1)
print len(X_1)
print len(Y)
inputs = DataFrame({
'Height' : X_1,
'Weight' : X_2,
'Targets' : Y
})
colormap = np.array(['r', 'b'])
net = perceptron.Perceptron(n_iter=1000, verbose=0, random_state=None, fit_intercept=True, eta0=0.002)
# Train the perceptron object (net)
net.fit(inputs[['Height','Weight']],inputs['Targets'])
# Output the values
print "Coefficient 0 " + str(net.coef_[0, 0])
print "Coefficient 1 " + str(net.coef_[0, 1])
print "Bias " + str(net.intercept_)
plt.scatter(inputs.Height,inputs.Weight, c=colormap[inputs.Targets],s=20)
# Calc the hyperplane (decision boundary)
ymin, ymax = plt.ylim()
w = net.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(ymin, ymax)
yy = a * xx - (net.intercept_[0]) / w[1]
# Plot the hyperplane
plt.plot(xx, yy, 'k-')
plt.show()