> cv.ctrl <- trainControl(method = "repeatedcv", repeats = 3,
+ summaryFunction = twoClassSummary,
+ classProbs = TRUE)
>
> set.seed(35)
> glm.tune.1 <- train(y ~ bool_3,
+ data = train.batch,
+ method = "glm",
+ metric = "ROC",
+ trControl = cv.ctrl)
Error in evalSummaryFunction(y, trControl, classLevels, metric, method) :
train()'s use of ROC codes requires class probabilities. See the classProbs option of trainControl()
In addition: Warning message:
In train.default(x, y, weights = w, ...) :
cannnot compute class probabilities for regression
> str(train.batch)
'data.frame': 128046 obs. of 42 variables:
$ offer : int 1194044 1194044 1194044 1194044 1194044 1194044 1194044 1194044 1194044 1194044 ...
$ avgPrice : num 2.68 2.68 2.68 2.68 2.68 ...
...
$ bool_3 : int 0 0 0 0 0 0 0 1 0 0 ...
$ y : num 0 1 0 0 0 1 1 1 1 0 ...
由于cv.ctrl的classProbs设置为TRUE,我不明白为什么会出现此错误消息。
有人可以提供建议吗?
答案 0 :(得分:5)
显然这个错误是因为我的 y不是因素。
以下代码正常运行:
library(caret)
library(mlbench)
data(Sonar)
ctrl <- trainControl(method = "cv",
summaryFunction = twoClassSummary,
classProbs = TRUE)
set.seed(1)
gbmTune <- train(Class ~ ., data = Sonar,
method = "gbm",
metric = "ROC",
verbose = FALSE,
trControl = ctrl)
然后做:
Sonar$Class = as.numeric(Sonar$Class)
并且相同的代码抛出错误:
> gbmTune <- train(Class ~ ., data = Sonar,
+ method = "gbm",
+ metric = "ROC",
+ verbose = FALSE,
+ trControl = ctrl)
Error in evalSummaryFunction(y, trControl, classLevels, metric, method) :
train()'s use of ROC codes requires class probabilities. See the classProbs option of trainControl()
In addition: Warning message:
In train.default(x, y, weights = w, ...) :
cannnot compute class probabilities for regression
但是,插入火车文件说:
y a numeric or factor vector containing the outcome for each sample.
答案 1 :(得分:1)
如果您将y中的值分别更改为“YES”和“NO”而不是1和0,则代码将会运行。
y=ifelse(train.batch$y==0,"No","Yes")