更新:我在谷歌搜索并阅读代码中的doxygen评论后设法让它工作。问题是我在使用resize()
方法之前错过了演员表,也没有使用std::ios::binary
来表示流。如果你想做类似的事情,最好检查一下Azoth的答案。
我正在尝试使用Cereal序列化Eigen::Matrix
类型。这就是我所拥有的(松散地基于https://gist.github.com/mtao/5798888和cereal/types
中的类型):
#include <cereal/cereal.hpp>
#include <cereal/archives/binary.hpp>
#include <Eigen/Dense>
#include <fstream>
namespace cereal
{
template <class Archive, class _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline
typename std::enable_if<traits::is_output_serializable<BinaryData<_Scalar>, Archive>::value, void>::type
save(Archive & ar, Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> const & m)
{
int rows = m.rows();
int cols = m.cols();
ar(make_size_tag(static_cast<size_type>(rows * cols)));
ar(rows);
ar(cols);
ar(binary_data(m.data(), rows * cols * sizeof(_Scalar)));
}
template <class Archive, class _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline
typename std::enable_if<traits::is_input_serializable<BinaryData<_Scalar>, Archive>::value, void>::type
load(Archive & ar, Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> const & m)
{
size_type size;
ar(make_size_tag(size));
int rows;
int cols;
ar(rows);
ar(cols);
const_cast<Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> &>(m).resize(rows, cols);
ar(binary_data(const_cast<_Scalar *>(m.data()), static_cast<std::size_t>(size * sizeof(_Scalar))));
}
}
int main() {
Eigen::MatrixXd test = Eigen::MatrixXd::Random(10, 3);
std::ofstream out = std::ofstream("eigen.cereal", std::ios::binary);
cereal::BinaryOutputArchive archive_o(out);
archive_o(test);
std::cout << "test:" << std::endl << test << std::endl;
out.close();
Eigen::MatrixXd test_loaded;
std::ifstream in = std::ifstream("eigen.cereal", std::ios::binary);
cereal::BinaryInputArchive archive_i(in);
archive_i(test_loaded);
std::cout << "test loaded:" << std::endl << test_loaded << std::endl;
}
答案 0 :(得分:10)
您的代码几乎是正确的,但有一些错误:
由于您明确地序列化了行数和列数,因此您不需要创建size_tag
。通常谷物使用size_tag
用于可调整大小的容器,如矢量或列表。即使矩阵可以调整大小,仅仅明确地序列化行和列也更有意义。
std::ofstream
个对象std::ofstream
以及谷物档案的关闭/拆除(二进制存档会立即清除其内容,但一般只保证谷物档案在破坏时冲洗他们的内容)这是一个在g ++和clang ++下编译并生成正确输出的版本:
#include <cereal/cereal.hpp>
#include <cereal/archives/binary.hpp>
#include <Eigen/Dense>
#include <fstream>
namespace cereal
{
template <class Archive, class _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline
typename std::enable_if<traits::is_output_serializable<BinaryData<_Scalar>, Archive>::value, void>::type
save(Archive & ar, Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> const & m)
{
int32_t rows = m.rows();
int32_t cols = m.cols();
ar(rows);
ar(cols);
ar(binary_data(m.data(), rows * cols * sizeof(_Scalar)));
}
template <class Archive, class _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline
typename std::enable_if<traits::is_input_serializable<BinaryData<_Scalar>, Archive>::value, void>::type
load(Archive & ar, Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> & m)
{
int32_t rows;
int32_t cols;
ar(rows);
ar(cols);
m.resize(rows, cols);
ar(binary_data(m.data(), static_cast<std::size_t>(rows * cols * sizeof(_Scalar))));
}
}
int main() {
Eigen::MatrixXd test = Eigen::MatrixXd::Random(10, 3);
{
std::ofstream out("eigen.cereal", std::ios::binary);
cereal::BinaryOutputArchive archive_o(out);
archive_o(test);
}
std::cout << "test:" << std::endl << test << std::endl;
Eigen::MatrixXd test_loaded;
{
std::ifstream in("eigen.cereal", std::ios::binary);
cereal::BinaryInputArchive archive_i(in);
archive_i(test_loaded);
}
std::cout << "test loaded:" << std::endl << test_loaded << std::endl;
}
答案 1 :(得分:0)
基于@Azoth的回答(无论如何,我想全力以赴),我对该模板做了一些改进
Eigen::Array
(而不只是Eigen::Matrix
)工作; Eigen::Vector3f
来说有很大的存储差异)。这是结果:
namespace cereal
{
template <class Archive, class Derived> inline
typename std::enable_if<traits::is_output_serializable<BinaryData<typename Derived::Scalar>, Archive>::value, void>::type
save(Archive & ar, Eigen::PlainObjectBase<Derived> const & m){
typedef Eigen::PlainObjectBase<Derived> ArrT;
if(ArrT::RowsAtCompileTime==Eigen::Dynamic) ar(m.rows());
if(ArrT::ColsAtCompileTime==Eigen::Dynamic) ar(m.cols());
ar(binary_data(m.data(),m.size()*sizeof(typename Derived::Scalar)));
}
template <class Archive, class Derived> inline
typename std::enable_if<traits::is_input_serializable<BinaryData<typename Derived::Scalar>, Archive>::value, void>::type
load(Archive & ar, Eigen::PlainObjectBase<Derived> & m){
typedef Eigen::PlainObjectBase<Derived> ArrT;
Eigen::Index rows=ArrT::RowsAtCompileTime, cols=ArrT::ColsAtCompileTime;
if(rows==Eigen::Dynamic) ar(rows);
if(cols==Eigen::Dynamic) ar(cols);
m.resize(rows,cols);
ar(binary_data(m.data(),static_cast<std::size_t>(rows*cols*sizeof(typename Derived::Scalar))));
}
}