给出3分A,B和C
我怎样才能找到并且从A开始,从C结束并通过B;它的中心坐标,半径和角度为r和r'?
答案 0 :(得分:6)
有几种方法可以做到这一点。这是一种算法:
获取您的COORDS
A = {xA,yA}
B = {xB,yB}
C = {xC,yC}
d = {xd,yd}
计算AB和BC线的中点
mid_AB = {(xA + xB)/ 2,(yA + yB)/ 2}
mid_BC = {(xB + xC)/ 2,(yB + yC)/ 2}
找到AB和BC线的斜率
slope_AB =(yB-yA)/(xB-xA)
slope_BC =(yC-yB)/(xC-xB)
构建贯穿中间点PERPENDICULAR到AB和BC的行(感谢Yves抓住否定!)
Slope_perp_AB = - (slope_AB)^( - 1)
Slope_perp_BC = - (slope_BC)^( - 1)
***带有Slope_perp_AB的行贯穿mid_AB
***带有Slope_perp_BC的线路贯穿mid_BC
设置两个方程彼此相等并求解找到交点! 这给你点d = {xd,yd} !!!
使用中心点d!
计算半径和角度现在是微不足道的答案 1 :(得分:5)
圆的中心与三个给定点等距:
(X-Xa)^2+(Y-Ya)^2 = (X-Xb)^2+(Y-Yb)^2 = (X-Xc)^2+(Y-Yc)^2
从第二个和第三个成员中减去第一个成员,我们在重组后得到:
2(Xa-Xb) X + 2(Ya-Yb) Y + Xb^2+Yb^2-Xa^2-Ya^2 = 0
2(Xa-Xc) X + 2(Ya-Yc) Y + Xc^2+Yc^2-Xa^2-Ya^2 = 0
这两个未知数的两个方程的线性系统很容易用Cramer的规则求解。
可以使用围绕中心的笛卡尔到极坐标变换找到半径和角度:
R= Sqrt((Xa-X)^2+(Ya-Y)^2)
Ta= atan2(Ya-Y, Xa-X)
Tc= atan2(Yc-Y, Xc-X)
但是你仍然会遗漏一件事:弧的相关部分是什么?小转弯还是大转弯?从Ta
到Tb
或从Tb
到2 Pi
再到Ta + 2 Pi
,还是什么?答案远不如看似那么明显,尝试一下(因为三个角度Ta
,Tb
和Tc
不确定为2 Pi
的倍数,你无法对它们进行排序)!
提示:考虑三角形ABC区域的符号,恰好是系统决定因素的一半。它会告诉你B是否位于AC的左侧或右侧。
答案 2 :(得分:4)
第1步
找到AB和BC的垂直平分线。
第2步
找到这些线相交的点。
您将找到的点是您想要的圆圈的中心。
第3步
计算从步骤2中找到的中心开始的三个点之一的距离。这将是您的圆的半径。
注意点A,B和C不得在同一行。在执行步骤1到3之前,您必须检查这一点。
答案 3 :(得分:2)
对此的解决方案几乎与“非最适合非超定系统的圈子”相同。由于你的三个点正好位于以(0,0)
(给定)为中心的圆弧上,因此系统可以精确求解而不需要最小二乘近似。
Finding the Center of a Circle Given 3 Points
Date: 05/25/2000 at 00:14:35
From: Alison Jaworski
Subject: finding the coordinates of the center of a circle
Hi,
Can you help me? If I have the x and y coordinates of 3 points - i.e.
(x1,y1), (x2,y2) and (x3,y3) - how do I find the coordinates of the
center of a circle on whose circumference the points lie?
Thank you.
Date: 05/25/2000 at 10:45:58
From: Doctor Rob
Subject: Re: finding the coordinates of the center of a circle
Thanks for writing to Ask Dr. Math, Alison.
Let (h,k) be the coordinates of the center of the circle, and r its
radius. Then the equation of the circle is:
(x-h)^2 + (y-k)^2 = r^2
Since the three points all lie on the circle, their coordinates will
satisfy this equation. That gives you three equations:
(x1-h)^2 + (y1-k)^2 = r^2
(x2-h)^2 + (y2-k)^2 = r^2
(x3-h)^2 + (y3-k)^2 = r^2
in the three unknowns h, k, and r. To solve these, subtract the first
from the other two. That will eliminate r, h^2, and k^2 from the last
two equations, leaving you with two simultaneous linear equations in
the two unknowns h and k. Solve these, and you'll have the coordinates
(h,k) of the center of the circle. Finally, set:
r = sqrt[(x1-h)^2+(y1-k)^2]
and you'll have everything you need to know about the circle.
This can all be done symbolically, of course, but you'll get some
pretty complicated expressions for h and k. The simplest forms of
these involve determinants, if you know what they are:
|x1^2+y1^2 y1 1| |x1 x1^2+y1^2 1|
|x2^2+y2^2 y2 1| |x2 x2^2+y2^2 1|
|x3^2+y3^2 y3 1| |x3 x3^2+y3^2 1|
h = ------------------, k = ------------------
|x1 y1 1| |x1 y1 1|
2*|x2 y2 1| 2*|x2 y2 1|
|x3 y3 1| |x3 y3 1|
Example: Suppose a circle passes through the points (4,1), (-3,7), and
(5,-2). Then we know that:
(h-4)^2 + (k-1)^2 = r^2
(h+3)^2 + (k-7)^2 = r^2
(h-5)^2 + (k+2)^2 = r^2
Subtracting the first from the other two, you get:
(h+3)^2 - (h-4)^2 + (k-7)^2 - (k-1)^2 = 0
(h-5)^2 - (h-4)^2 + (k+2)^2 - (k-1)^2 = 0
h^2+6*h+9 - h^2+8*h-16 + k^2-14*k+49 - k^2+2*k-1 = 0
h^2-10*h+25 - h^2+8*h-16 + k^2+4*k+4 - k^2+2*k-1 = 0
14*h - 12*k + 41 = 0
-2*h + 6*k + 12 = 0
10*h + 65 = 0
30*k + 125 = 0
h = -13/2
k = -25/6
Then
r = sqrt[(4+13/2)^2 + (1+25/6)^2]
= sqrt[4930]/6
Thus the equation of the circle is:
(x+13/2)^2 + (y+25/6)^2 = 4930/36
- Doctor Rob, The Math Forum
http://mathforum.org/dr.math/
<强>参考强>
<http://mathforum.org/library/drmath/view/55239.html>
答案 4 :(得分:1)
你有三个方程来确定三个未知数xM,yM和R,
(xA-xM)^2+(yA-yM^2) = R^2
等。从B和C方程中减去A方程得出
2*(xB-xA)*xM+2*(yB-yA)*yM = xB^2-xA^2+yB^2-yA^2
2*(xC-xA)*xM+2*(yC-yA)*yM = xC^2-xA^2+yC^2-yA^2
通过求解这个2x2线性系统,可以得到圆的中心点,插入任何原始方程给出半径。
答案 5 :(得分:1)
有一个鲜为人知的结果,通过3个点给出一个圆的隐式方程:
|Z X Y 1|
|Za Xa Ya 1|
|Zb Xb Yb 1| = 0
|Zc Xc Yc 1|
我们为了简洁而定义了Z:= X^2 + Y^2
。
计算3x3未成年人,我们发展成:
M00 Z + M10 X + M20 Y + M30 = 0
并且,在归一化之后,我们得到通常的二度方程:
X^2 + Y^2 + 2U X + 2V Y + W = 0
这可以改写为:
(X - U)^2 + (Y - V)^2 = U^2 + V^2 - W
立即给出中心(U, V) = (-M10/2.M00, -M20/2.M00)
和半径R^2 = U^2 + V^2 - M30/M00
。