网络上的所有变革问题都只涉及我们拥有无限量的各种硬币/纸币的理想情况。
我想处理ATM的数量有限的情况:10,20,50,100,200张钞票,它必须找到改变的方法。
我已经做过那样但是我无法处理110美元的需求。整个算法在方法withdrawCash()
你可以复制它编译的代码和的工作原理。
输出或110 $:
10 * 1 = 10
20 * 4 = 80
Notes of 10 left are 0
Notes of 20 left are 0
Notes of 50 left are 2
Notes of 100 left are 2
Notes of 200 left are 10
public class ATM {
/** The Constant Currency Denominations. */
protected static final int[] currDenom = { 10, 20, 50, 100, 200 };
/** The Number of Currencies of each type */
protected static int[] currNo = { 1, 4, 2, 2, 10 };
/** The count. */
protected int[] count = { 0, 0, 0, 0, 0 };
protected static int totalCorpus;
static {
calcTotalCorpus();
}
public static void calcTotalCorpus() {
for (int i = 0; i < currDenom.length; i++) {
totalCorpus = totalCorpus + currDenom[i] * currNo[i];
}
}
public ATM() {
}
public synchronized void withdrawCash(int amount) {
if (amount <= totalCorpus) {
for (int i = 0; i < currDenom.length; i++) {
if (currDenom[i] <= amount) {//If the amount is less than the currDenom[i] then that particular denomination cannot be dispensed
int noteCount = amount / currDenom[i];
if (currNo[i] > 0) {//To check whether the ATM Vault is left with the currency denomination under iteration
//If the Note Count is greater than the number of notes in ATM vault for that particular denomination then utilize all of them
count[i] = noteCount >= currNo[i] ? currNo[i] : noteCount;
currNo[i] = noteCount >= currNo[i] ? 0 : currNo[i] - noteCount;
//Deduct the total corpus left in the ATM Vault with the cash being dispensed in this iteration
totalCorpus = totalCorpus - (count[i] * currDenom[i]);
//Calculate the amount that need to be addressed in the next iterations
amount = amount - (count[i] * currDenom[i]);
}
}
}
displayNotes();
displayLeftNotes();
} else {
System.out.println("Unable to dispense cash at this moment for this big amount");
}
}
private void displayNotes() {
for (int i = 0; i < count.length; i++) {
if (count[i] != 0) {
System.out.println(currDenom[i] + " * " + count[i] + " = " + (currDenom[i] * count[i]));
}
}
}
private void displayLeftNotes() {
for (int i = 0; i < currDenom.length; i++) {
System.out.println("Notes of " + currDenom[i] + " left are " + currNo[i]);
}
}
public static void main(String[] args) {
new ATM().withdrawCash(110);
}
}
答案 0 :(得分:8)
它可以相对容易地完成,你只需要继续尝试添加留在各种可能性中的钞票,然后放弃可能性,这已经超过了你想要达到的效果。
这是工作代码,值是“银行票据”值,而“ammounts”是您拥有的银行票据的数量:
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class JavaApplication55 {
int[] values = {10,20,50,100,200};
public static void main(String[] args) {
int[] values = {10,20,50,100,200};
int[] ammounts = {10,10,10,10,10};
List<Integer[]> results = solutions(values, ammounts, new int[5], 180, 0);
for (Integer[] result : results){
System.out.println(Arrays.toString(result));
}
}
public static List<Integer[]> solutions(int[] values, int[] ammounts, int[] variation, int price, int position){
List<Integer[]> list = new ArrayList<>();
int value = compute(values, variation);
if (value < price){
for (int i = position; i < values.length; i++) {
if (ammounts[i] > variation[i]){
int[] newvariation = variation.clone();
newvariation[i]++;
List<Integer[]> newList = solutions(values, ammounts, newvariation, price, i);
if (newList != null){
list.addAll(newList);
}
}
}
} else if (value == price) {
list.add(myCopy(variation));
}
return list;
}
public static int compute(int[] values, int[] variation){
int ret = 0;
for (int i = 0; i < variation.length; i++) {
ret += values[i] * variation[i];
}
return ret;
}
public static Integer[] myCopy(int[] ar){
Integer[] ret = new Integer[ar.length];
for (int i = 0; i < ar.length; i++) {
ret[i] = ar[i];
}
return ret;
}
}
这个代码有这个输出(输出10,20,50,100,200张钞票,你每个都有10个,你想得到180个)
[10, 4, 0, 0, 0]
[9, 2, 1, 0, 0]
[8, 5, 0, 0, 0]
[8, 0, 2, 0, 0]
[8, 0, 0, 1, 0]
[7, 3, 1, 0, 0]
[6, 6, 0, 0, 0]
[6, 1, 2, 0, 0]
[6, 1, 0, 1, 0]
[5, 4, 1, 0, 0]
[4, 7, 0, 0, 0]
[4, 2, 2, 0, 0]
[4, 2, 0, 1, 0]
[3, 5, 1, 0, 0]
[3, 0, 3, 0, 0]
[3, 0, 1, 1, 0]
[2, 8, 0, 0, 0]
[2, 3, 2, 0, 0]
[2, 3, 0, 1, 0]
[1, 6, 1, 0, 0]
[1, 1, 3, 0, 0]
[1, 1, 1, 1, 0]
[0, 9, 0, 0, 0]
[0, 4, 2, 0, 0]
[0, 4, 0, 1, 0]
答案 1 :(得分:1)
从给定的一组硬币中获取金额是n-p完全问题,因为它会减少到subset sum问题或knapsack问题。但是你有一个针对背包问题的伪多项式时间算法,它足以满足你的需要。在这里,您使用的是贪婪算法,该算法提供的解决方案可以为大多数情况提供解决方案,但对某些情况失败,因此无法使用,但您可以使用伪多项式时间算法和贪婪的组合来获得解决所有问题的有效算法最佳案例的高速解决方案。
使用背包类比的伪多项式时间解决方案:
- 背包容量: - 例如110
所需的金额- 可用项目: - x1 * 10,x2 * 20 .... xn * 100。物品的成本和重量相同。
- 使用DP解决方案解决背包以获取最大利润
- 如果最大利润==背包容量,那么你有一个解决方案,所以使用DP矩阵进行回溯。
- 否则您无法使用当前可用的硬币获得金额。
醇>
时间复杂度: - O(Amount*Items)
贪婪和DP解决方案的结合: -
boolean greedysolve = false, DPsolve = false;
greedysolve = YourSolution();
if(!greedysolve) {
DPsolve = KnapsackSolution();
}
else {
return(greedy_solution);
}
if(!DPsolve) {
return(DPsolution);
}
return(null); // No solution