我对C编程有疑问
我想写一个程序计算e值,供用户输入n值。
你知道;我们可以为n = 1,2定义x = pow(1 + 1 / n,n)。可以在数学上示出x-> e作为n - >无穷。
我该怎么做?
我已经做到了这一点,我已经尝试但是我没有像我说的那样工作:
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<math.h>
int main()
{
int i,n,x1;
printf("Enter a n value:");
scanf("%d", &n);
for (i = 0;; i++)
{
x1 = pow((1 + 1 / n), n);
printf("Values:%d",x1);
}
system("pause");
return 0;
}
答案 0 :(得分:1)
1 / n
是一个带有两个整数操作数的表达式。因此执行整数除法。如果n
等于1
,则评估为1
。对于n
大于1
的所有值,此整数除法的计算结果为0
。
您需要浮点除法,因此必须至少使其中一个操作数成为浮点值。例如
1.0 / n
您还需要将x1
声明为浮点值并使用%f
。尝试用整数变量逼近e
是不行的。
我想你会在某个时候需要实现一个循环终止条件。就目前而言,你的循环是没有意义的,因为循环中使用的值都没有变化。
这是一个可能正朝着正确方向前进的计划:
#include<stdio.h>
#include<math.h>
int main(void)
{
for (int n = 1; n <= 1000; n++)
{
double e = pow(1 + 1.0 / n, n);
printf("n=%d, approximation to e=%.16f\n", n, e);
}
printf("true value of e=%.16f\n", exp(1.0));
return 0;
}
<强>输出强>
n=1, approximation to e=2.0000000000000000 n=2, approximation to e=2.2500000000000000 n=3, approximation to e=2.3703703703703698 n=4, approximation to e=2.4414062500000000 n=5, approximation to e=2.4883199999999994 n=6, approximation to e=2.5216263717421135 n=7, approximation to e=2.5464996970407121 n=8, approximation to e=2.5657845139503479 n=9, approximation to e=2.5811747917131984 n=10, approximation to e=2.5937424601000023 .......... n=991, approximation to e=2.7169116115768883 n=992, approximation to e=2.7169129915688766 n=993, approximation to e=2.7169143687840753 n=994, approximation to e=2.7169157432307069 n=995, approximation to e=2.7169171149169880 n=996, approximation to e=2.7169184838514693 n=997, approximation to e=2.7169198500421694 n=998, approximation to e=2.7169212134981109 n=999, approximation to e=2.7169225742266474 n=1000, approximation to e=2.7169239322355936 true value of e=2.7182818284590451
值得注意的是,收敛率非常低。并且估算的准确性永远不会很好,因为对于大n
,您将在1.0 + 1.0 / n
中受到影响。这绝对不是近似e
的有用方法。
此版本使用infinite sum收敛得更快:
#include<stdio.h>
#include<math.h>
int main(void)
{
double e = 0.0;
double increment = 1.0;
for (int n = 0; n <= 20; n++)
{
e += increment;
increment /= (n+1);
printf("n=%d, approximation to e=%.16f\n", n, e);
}
printf("true value of e=%.16f\n", exp(1.0));
return 0;
}
<强>输出强>
n=0, approximation to e=1.0000000000000000 n=1, approximation to e=2.0000000000000000 n=2, approximation to e=2.5000000000000000 n=3, approximation to e=2.6666666666666665 n=4, approximation to e=2.7083333333333330 n=5, approximation to e=2.7166666666666663 n=6, approximation to e=2.7180555555555554 n=7, approximation to e=2.7182539682539684 n=8, approximation to e=2.7182787698412700 n=9, approximation to e=2.7182815255731922 n=10, approximation to e=2.7182818011463845 n=11, approximation to e=2.7182818261984929 n=12, approximation to e=2.7182818282861687 n=13, approximation to e=2.7182818284467594 n=14, approximation to e=2.7182818284582302 n=15, approximation to e=2.7182818284589949 n=16, approximation to e=2.7182818284590429 n=17, approximation to e=2.7182818284590455 n=18, approximation to e=2.7182818284590455 n=19, approximation to e=2.7182818284590455 n=20, approximation to e=2.7182818284590455 true value of e=2.7182818284590451