背景是按键排序的有限地图的数据类型,如previous question中所述:
open import Function
open import Relation.Binary renaming (IsEquivalence to IsEq)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
module Data.Temp
{k v ℓ ℓ′}
{Key : Set k}
(Value : Set v)
{_<_ : Rel Key ℓ}
(isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_)
where
open import Algebra.FunctionProperties
open import Data.Product
open IsStrictTotalOrder isStrictTotalOrder
open import Level
KV : Set (k ⊔ v)
KV = Key × Value
-- Adapted from the sorted lists presented in Why Dependent Types Matter (Altenkirch, Mcbride & McKinna).
-- The lower bound is not tight.
data FiniteMap (l : Key) : Set (k ⊔ v ⊔ ℓ) where
[] : FiniteMap l
_∷[_]_ : (kv : KV) → let k = proj₁ kv in l < k → (m : FiniteMap k) → FiniteMap l
infixr 3 _∷[_]_
-- Split into two definitions to help the termination checker.
unionWith : ∀ {l} → Op₂ Value → Op₂ (FiniteMap l)
unionWith′ : ∀ {l} → Op₂ Value → (kv : KV) → let k = proj₁ kv in l < k → FiniteMap k → Op₁ (FiniteMap l)
unionWith _ [] [] = []
unionWith _ [] m = m
unionWith _ m [] = m
unionWith ∙ (k , v ∷[ k<l ] m) (k′ , v′ ∷[ k′<l ] m′) with compare k k′
... | tri< k<k′ _ _ = k , v ∷[ k<l ] unionWith ∙ m (k′ , v′ ∷[ k<k′ ] m′)
... | tri≈ _ k≡k′ _ rewrite P.sym k≡k′ = k , (v ⟨ ∙ ⟩ v′) ∷[ k<l ] unionWith ∙ m m′
... | tri> _ _ k′<k = k′ , v′ ∷[ k′<l ] unionWith′ ∙ (k , v) k′<k m m′
unionWith′ _ (k , v) l<k m [] = k , v ∷[ l<k ] m
unionWith′ ∙ (k , v) l<k m (k′ , v′ ∷[ k′<l ] m′) with compare k k′
... | tri< k<k′ _ _ = k , v ∷[ l<k ] unionWith ∙ m (k′ , v′ ∷[ k<k′ ] m′)
... | tri≈ _ k≡k′ _ rewrite P.sym k≡k′ = k , (v ⟨ ∙ ⟩ v′) ∷[ l<k ] unionWith ∙ m m′
... | tri> _ _ k′<k = k′ , v′ ∷[ k′<l ] unionWith′ ∙ (k , v) k′<k m m′
我现在有兴趣证明这种类型构造函数在A上保留任何可交换的幺半群结构,其中有限映射的幺半群运算是unionWith ∙
(其中∙是底层幺半群的可交换运算)。我应该指出,虽然unionWith ∙
显然可以清除地图中嵌入的边界,但我还不确定它是否“在鼻子上”,即考虑边界。 / p>
所以,除了这个警告之外,我遇到了一条错误消息,试图在我的尝试证明中说明一个精确的目标。这是证明的骨架,有问题的位被注释掉:
comm : ∀ {l} (∙ : Op₂ Value) → Commutative _≡_ ∙ →
Commutative _≡_ (unionWith {l} ∙)
comm ∙ _ [] [] = P.refl
comm ∙ _ [] (_ ∷[ _ ] _) = P.refl
comm ∙ _ (_ ∷[ _ ] _) [] = P.refl
comm {l} ∙ _ (k , v ∷[ k<l ] m) (k′ , v′ ∷[ k′<l ] m′) with compare k k′
... | tri< _ _ _ = {!!}
... | tri≈ _ k≡k′ _ {- rewrite P.sym k≡k′ -} = {!!}
... | tri> _ _ _ = {!!}
这是我希望能够为k≡k′
案例插入的精确目标:
begin
k , (v ⟨ ∙ ⟩ v′) ∷[ l<k ] unionWith ∙ m m′
≡⟨ ? ⟩
unionWith ∙ (k′ , v′ ∷[ k′<l ] m′) (k , v ∷[ k<l ] m)
∎ where
open import Relation.Binary.EqReasoning (P.setoid (FiniteMap l))
但是为了做好打字,我需要k≡k'。根据{{1}}的定义,我想在上面的代码中插入注释掉的unionWith
。
不幸的是,我收到了一条相当令人讨厌的错误消息:
rewrite P.sym k≡k′
讨论了k′ != w of type Key
when checking that the type [scary stuff]
≡
(unionWith Value isStrictTotalOrder ∙ (w , v′ ∷[ k′<l ] m′)
(k₁ , v₁ ∷[ k<l ] m)
| compare w k₁)
of the generated with function is well-formed.
错误消息的质量问题here。当然,错误信息的质量不是我直接关注的问题,但它并没有帮助我理解我是否在这里做错了。
我是否以大致正确的方式进行,即使用with
和with
来改进我的背景,以便我可以开始证明特定情况? (来自this question,我认为答案可能是肯定的。)如果是这样,是什么导致了这个问题呢?
答案 0 :(得分:0)
我将回答我自己的问题,因为我似乎不理解如何正确使用with
条款。在k≡k'的情况下,我需要为两个有限映射再次给出完整模式,而不是仅通过“...
”重用现有模式。然后我可以将.k
代替k,并将类型k≡k'的值与refl
匹配(以证明.k
)。
然后我精确的目标类型检查(此版本已经在合适的l
,∙
和Commutative _≡_ ∙
的范围内):
comm′ : Commutative (unionWith ∙)
comm′ [] [] = P.refl
comm′ [] (_ ∷[ _ ] _) = P.refl
comm′ (_ ∷[ _ ] _) [] = P.refl
comm′ (k , _ ∷[ _ ] _) (k′ , _ ∷[ _ ] _) with compare k k′
... | tri< _ _ _ = {!!}
comm′ (k , v ∷[ k<l ] m) (.k , v′ ∷[ k′<l ] m′) | tri≈ _ P.refl _ =
begin
k , (v ⟨ ∙ ⟩ v′) ∷[ k<l ] unionWith ∙ m m′
≡⟨ {!!} ⟩
unionWith ∙ (k , v′ ∷[ k′<l ] m′) (k , v ∷[ k<l ] m)
∎
... | tri> _ _ _ = {!!}
人们认为原始问题仍然有用吗?我可以删除它。